@article{TMF_2019_199_2_a5,
author = {Chuanzhong Li},
title = {Bosonic symmetries of the~extended fermionic $(2N,2M)${-Toda~hierarchy}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {257--271},
year = {2019},
volume = {199},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a5/}
}
Chuanzhong Li. Bosonic symmetries of the extended fermionic $(2N,2M)$-Toda hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 257-271. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a5/
[1] A. Yu. Orlov, E. I. Schulman, “Additional symmetries for integrable equations and conformal algebra representation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR
[2] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | MR
[3] M. Toda, “Wave propagation in anharmonic lattices”, J. Phys. Soc. Japan, 23:3 (1967), 501–506 | DOI
[4] Y. Zhang, “On the $CP^1$ topological sigma model and the Toda lattice hierarchy”, J. Geom. Phys., 40:3–4 (2002), 215–232 | DOI | MR
[5] G. Carlet, B. A. Dubrovin, Y. Zhang, “The extended Toda hierarchy”, Moscow Math. J., 4:2 (2004), 313–332 | DOI | MR | Zbl
[6] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, arXiv: math.DG/0108160
[7] E. Getzler, “The Toda conjecture”, Symplectic Geometry and Mirror Symmetry, Proceedings of the 4th KIAS Annual International Conference (Seoul, South Korea, August 14–18, 2000), eds. K. Fukaya, Y.-G. Oh, K. Ono, G. Tian, World Sci., Singapore, 2001, 51–79, arXiv: math.AG/0108108 | DOI | MR
[8] G. Carlet, “The extended bigraded Toda hierarchy”, J. Phys. A: Math. Gen., 39:30 (2006), 9411–9435, arXiv: math-ph/0604024 | DOI | MR
[9] C. Z. Li, J. S. He, K. Wu, Y. Cheng, “Tau function and Hirota bilinear equations for the extended bigraded Toda hierarchy”, J. Math. Phys., 51:4 (2010), 043514, 32 pp. | DOI | MR
[10] G. Carlet, J. van de Leur, “Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of $\mathbb{P}^1$ orbifolds”, J. Phys. A: Math. Theor., 46:40 (2013), 405205, 16 pp. | DOI | MR
[11] C. Z. Li, J. S. He, Y. Su, “Block type symmetry of bigraded Toda hierarchy”, J. Math. Phys., 53:1 (2012), 013517, 24 pp., arXiv: 1201.1984 | DOI | MR
[12] C. Z. Li, “Solutions of bigraded Toda hierarchy”, J. Phys. A: Math. Theor., 44:25 (2011), 255201, 29 pp., arXiv: 1011.4684 | DOI | MR
[13] C. Z. Li, J. S. He, “Dispersionless bigraded Toda hierarchy and its additional symmetry”, Rev. Math. Phys., 24:7 (2012), 1230003, 34 pp. | DOI | MR
[14] C. Z. Li, J. S. He, “Quantum torus symmetry of the KP, KdV and BKP hierarchies”, Lett. Math. Phys., 104:11 (2014), 1407–1423, arXiv: 1312.0758 | DOI | MR
[15] K. Ueno, H. Yamada, “A supersymmetric extension of nonlinear integrable systems”, Topological and Geometrical Methods in Field Theory (Espoo, Finland, 8–14 June, 1986), eds. J. Westerholm, J. Hietarinta, World Sci., Singapore, 1986, 59–72 | MR
[16] Yu. Manin, A. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR
[17] S. Stanciu, “Additional symmetries of supersymmetric KP hierarchies”, Commun. Math. Phys., 165:2 (1994), 261–279, arXiv: hep-th/9309058 | DOI | MR
[18] E. Ramos, S. Stanciu, “On the supersymmetric BKP-hierarchy”, Nucl. Phys. B, 427:1–2 (1994), 338–350, arXiv: hep-th/9402056 | DOI | MR
[19] C. Z. Li, J. S. He, “Supersymmetric BKP systems and their symmetries”, Nucl. Phys. B, 896 (2015), 716–737, arXiv: 1505.01938 | DOI | MR
[20] C. Z. Li, “Darboux transformation of the supersymmetric BKP hierarchy”, J. Nonlinear Math. Phys., 23:3 (2016), 306–313 | DOI | MR
[21] K. Ikeda, “A supersymmetric extension of the Toda lattice hierarchy”, Lett. Math. Phys., 14:4 (1987), 321–328 | DOI | MR
[22] K. Ikeda, “The super-Toda lattice hierarchy”, Publ. Res. Inst. Math. Sci., 25:5 (1989), 829–845 | DOI | MR
[23] O. Lechtenfeld, A. S. Sorin, “Fermionic flows and tau function of the $N=(1|1)$ superconformal Toda lattice hierarchy”, Nucl. Phys. B, 557:3 (1999), 535–547 | DOI | MR
[24] V. G. Kadyshevsky, A. S. Sorin, “Supersymmetric Toda lattice hierarchies”, Integrable Hierarchies and Modern Physical Theories (Chicago, USA, July 22–26, 2000), NATO Science Series, 18, eds. H. Aratyn, A. S. Sorin, Springer, Dordrecht, 2001, 289–316, arXiv: nlin.SI/0011009 | DOI | MR
[25] V. V. Gribanov, V. G. Kadyshevsky, A. S. Sorin, “Fermionic one- and two-dimensional Toda lattice hierarchies and their bi-Hamiltonian structures”, Nucl. Phys. B, 727:3 (2005), 564–586, arXiv: nlin/0506041 | DOI | MR
[26] V. G. Kadyshevskii, A. S. Sorin, “$N=(1|1)$ supersimmetrichnaya bezdispersionnaya reshetochnaya ierarkhiya Tody”, TMF, 132:2 (2002), 222–237 | DOI | DOI | MR | Zbl
[27] C. Z. Li, J. S. He, “Block algebra in two-component BKP and D type Drinfeld–Sokolov hierarchies”, J. Math. Phys., 54:11 (2013), 113501, 14 pp., arXiv: 1210.6498 | DOI | MR
[28] C. Z. Li, “Constrained lattice-field hierarchies and Toda system with Block symmetry”, Internat. J. Geom. Methods Modern Phys., 13:5 (2016), 1650061, 16 pp. | DOI | MR
[29] M. Adler, T. Shiota, P. van Moerbeke, “A Lax representation for the vertex operator and the central extension”, Commun. Math. Phys., 171:3 (1995), 547–588 | DOI | MR