Algebro-geometric integration of the~modified Belov--Chaltikian lattice hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 235-256
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov–Chaltikian lattice hierarchy associated with a discrete $3\times3$ matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve $\mathcal{K}_{m-2}$ of arithmetic genus $m-2$. We study the asymptotic properties of the Baker–Akhiezer function and the algebraic function carrying the data of the divisor near $P_{\infty_1}$, $P_{\infty_2}$, $P_{\infty_3}$, and $P_0$ on $\mathcal{K}_{m-2}$. Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the Baker–Akhiezer function, and, in particular, solutions of the entire modified Belov–Chaltikian lattice hierarchy.
Keywords:
modified Belov–Chaltikian lattice hierarchy, trigonal curve,
quasiperiodic solution.
@article{TMF_2019_199_2_a4,
author = {X. Geng and J. Wei and X. Zeng},
title = {Algebro-geometric integration of the~modified {Belov--Chaltikian} lattice hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {235--256},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/}
}
TY - JOUR AU - X. Geng AU - J. Wei AU - X. Zeng TI - Algebro-geometric integration of the~modified Belov--Chaltikian lattice hierarchy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 235 EP - 256 VL - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/ LA - ru ID - TMF_2019_199_2_a4 ER -
X. Geng; J. Wei; X. Zeng. Algebro-geometric integration of the~modified Belov--Chaltikian lattice hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 235-256. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/