Algebro-geometric integration of the modified Belov–Chaltikian lattice hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 235-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov–Chaltikian lattice hierarchy associated with a discrete $3\times3$ matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve $\mathcal{K}_{m-2}$ of arithmetic genus $m-2$. We study the asymptotic properties of the Baker–Akhiezer function and the algebraic function carrying the data of the divisor near $P_{\infty_1}$, $P_{\infty_2}$, $P_{\infty_3}$, and $P_0$ on $\mathcal{K}_{m-2}$. Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the Baker–Akhiezer function, and, in particular, solutions of the entire modified Belov–Chaltikian lattice hierarchy.
Keywords: modified Belov–Chaltikian lattice hierarchy, trigonal curve
Mots-clés : quasiperiodic solution.
@article{TMF_2019_199_2_a4,
     author = {X. Geng and J. Wei and X. Zeng},
     title = {Algebro-geometric integration of the~modified {Belov{\textendash}Chaltikian} lattice hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {235--256},
     year = {2019},
     volume = {199},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/}
}
TY  - JOUR
AU  - X. Geng
AU  - J. Wei
AU  - X. Zeng
TI  - Algebro-geometric integration of the modified Belov–Chaltikian lattice hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 235
EP  - 256
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/
LA  - ru
ID  - TMF_2019_199_2_a4
ER  - 
%0 Journal Article
%A X. Geng
%A J. Wei
%A X. Zeng
%T Algebro-geometric integration of the modified Belov–Chaltikian lattice hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 235-256
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/
%G ru
%F TMF_2019_199_2_a4
X. Geng; J. Wei; X. Zeng. Algebro-geometric integration of the modified Belov–Chaltikian lattice hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 235-256. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a4/

[1] M. Toda, “Waves in nonlinear lattice”, Progr. Theor. Phys. Suppl., 45 (1970), 174–200 | DOI

[2] M. Toda, Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences, 20, Springer, Berlin, 1982 | DOI | MR

[3] M. Kac, P. van Moerbeke, “On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices”, Adv. Math., 16:2 (1975), 160–169 | DOI | MR

[4] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[5] R. Hirota, “Exact $N$-soliton of nonlinear lumped self-dual network equations”, J. Phys. Soc. Japan, 35:1 (1973), 289–294 | DOI

[6] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR

[7] R. Hirota, J. Satsuma, “A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice”, Progr. Theor. Phys. Suppl., 59 (1975), 64–100 | DOI | MR

[8] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[9] E. Date, S. Tanaka, “Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice”, Progr. Theor. Phys. Suppl., 59 (1976), 107–125 | DOI | MR

[10] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | DOI | MR | Zbl

[11] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2(218) (1981), 11–80 | DOI | MR | Zbl

[12] Y. C. Ma, M. J. Ablowitz, “The periodic cubic Schrödinger equation”, Stud. Appl. Math., 65:2 (1981), 113–158 | DOI | MR

[13] E. Previato, “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation”, Duke Math. J., 52:2 (1985), 329–377 | DOI | MR

[14] S. J. Alber, “On finite-zone solutions of relativistic Toda lattices”, Lett. Math. Phys., 17:2 (1989), 149–155 | DOI | MR

[15] P. D. Miller, N. N. Ercolani, I. M. Krichever, C. D. Levermore, “Finite genus solutions to the Ablowitz–Ladik equations”, Commun. Pure Appl. Math., 48:12 (1995), 1369–1440 | DOI | MR

[16] C. W. Cao, Y. T. Wu, X. G. Geng, “Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR

[17] X. G. Geng, C. W. Cao, “Decomposition of the $(2+1)$-dimensional Gardner equation and its quasi-periodic solutions”, Nonlinearity, 14:6 (2001), 1433–1452 | DOI | MR

[18] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994

[19] S. Ahmad, A. R. Chowdhury, “The quasi-periodic solutions to the discrete nonlinear Schrödinger equation”, J. Math. Phys., 28:1 (1987), 134–137 | DOI | MR

[20] S. Ahmad, A. R. Chowdhury, “On the quasi-periodic solutions to the discrete nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 20:2 (1987), 293–303 | DOI | MR

[21] X. G. Geng, H. H. Dai, J. Y. Zhu, “Decomposition of the discrete Ablowitz–Ladik hierarchy”, Stud. Appl. Math., 118:3 (2007), 281–312 | DOI | MR

[22] F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, v. II, $(1+1)$-Dimensional Discrete Models, Cambridge Univ. Press, Cambridge, 2008 | DOI | MR

[23] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR

[24] A. O. Smirnov, “Matrichnyi analog teoremy Appelya i reduktsii mnogomernykh teta–funktsii Rimana”, Matem. sb., 133(175):3(7) (1987), 382–391 | DOI | MR | Zbl

[25] H. P. McKean, “Integrable systems and algebraic curves”, Global Analysis (Calgary, Alberta, June 12–27, 1978), Lecture Notes in Mathematics, 755, eds. M. Adler, M. Grmela, J. E. Marsden, Springer, Berlin, 1979, 83–200 | MR

[26] E. Previato, J. L. Verdier, “Boussinesq elliptic solitons: the cyclic case”, Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), eds. S. Ramanan, A. Beuaville, Hindustan Book Agency, Dehli, 1993, 173–185 | MR

[27] V. B. Matveev, A. O. Smirnov, “On the Riemann theta function of a trigonal curve and solutions of the Boussinesq and KP equations”, Lett. Math. Phys., 14:1 (1987), 25–31 | DOI | MR

[28] E. Previato, “Monodromy of Boussinesq elliptic operators”, Acta Appl. Math., 36:1–2 (1994), 49–55 | DOI | MR

[29] Yu. V. Brezhnev, “Konechnozonnye potentsialy s trigonalnymi krivymi”, TMF, 133:3 (2002), 398–404 | DOI | DOI | MR | Zbl

[30] J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Ônishi, E. Previato, “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not., 2007 (2007), 140, 38 pp. | DOI | MR

[31] S. Baldwin, J. C. Eilbeck, J. Gibbons, Y. Ônishi, “Abelian functions for cyclic trigonal curves of genus 4”, J. Geom. Phys., 58:4 (2008), 450–467, arXiv: math/0612654 | DOI | MR

[32] Y. Ônishi, “Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case”, Internat. J. Math., 20:4 (2009), 427–441 | DOI | MR

[33] R. Dickson, F. Gesztesy, K. Unterkofler, “A new approach to the Boussinesq hierarchy”, Math. Nachr., 198 (1999), 51–108 | DOI | MR

[34] R. Dickson, F. Gesztesy, K. Unterkofler, “Algebro-geometric solutions of the Boussinesq hierarchy”, Rev. Math. Phys., 11:7 (1999), 823–879 | DOI | MR

[35] X. G. Geng, L. H. Wu, G. L. He, “Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions”, Phys. D, 240:16 (2011), 1262–1288 | DOI | MR

[36] X. G. Geng, L. H. Wu, G. L. He, “Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy”, J. Nonlinear Sci., 23:4 (2013), 527–555 | DOI | MR

[37] X. G. Geng, Y. Y. Zhai, H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy”, Adv. Math., 263 (2014), 123–153 | DOI | MR

[38] Y. T. Wu, X. G. Geng, “A finite-dimensional integrable system associated with the three-wave interaction equations”, J. Math. Phys., 40:7 (1999), 3409–3430 | DOI | MR

[39] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1994 | DOI | MR

[40] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1998 | MR | MR | Zbl