Superintegrable systems with algebraic and rational integrals of motion
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 218-234

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider superintegrable deformations of the Kepler problem and the harmonic oscillator on the plane and also superintegrable metrics on a two-dimensional sphere, for which the additional integral of motion is either an algebraic or a rational function of momenta. According to Euler, these integrals of motion take the simplest form in terms of affine coordinates of elliptic curve divisors.
Keywords: finite-dimensional integrable system, discrete integrable map, intersection theory.
@article{TMF_2019_199_2_a3,
     author = {A. V. Tsiganov},
     title = {Superintegrable systems with algebraic and rational integrals of motion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--234},
     publisher = {mathdoc},
     volume = {199},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Superintegrable systems with algebraic and rational integrals of motion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 218
EP  - 234
VL  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/
LA  - ru
ID  - TMF_2019_199_2_a3
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Superintegrable systems with algebraic and rational integrals of motion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 218-234
%V 199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/
%G ru
%F TMF_2019_199_2_a3
A. V. Tsiganov. Superintegrable systems with algebraic and rational integrals of motion. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 218-234. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/