Superintegrable systems with algebraic and rational integrals of motion
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 218-234
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider superintegrable deformations of the Kepler problem and the harmonic oscillator on the plane and also superintegrable metrics on a two-dimensional sphere, for which the additional integral of motion is either an algebraic or a rational function of momenta. According to Euler, these integrals of motion take the simplest form in terms of affine coordinates of elliptic curve divisors.
Keywords:
finite-dimensional integrable system, discrete integrable map,
intersection theory.
@article{TMF_2019_199_2_a3,
author = {A. V. Tsiganov},
title = {Superintegrable systems with algebraic and rational integrals of motion},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--234},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/}
}
A. V. Tsiganov. Superintegrable systems with algebraic and rational integrals of motion. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 218-234. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/