Superintegrable systems with algebraic and rational integrals of motion
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 218-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider superintegrable deformations of the Kepler problem and the harmonic oscillator on the plane and also superintegrable metrics on a two-dimensional sphere, for which the additional integral of motion is either an algebraic or a rational function of momenta. According to Euler, these integrals of motion take the simplest form in terms of affine coordinates of elliptic curve divisors.
Keywords: finite-dimensional integrable system, discrete integrable map, intersection theory.
@article{TMF_2019_199_2_a3,
     author = {A. V. Tsiganov},
     title = {Superintegrable systems with algebraic and rational integrals of motion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {218--234},
     year = {2019},
     volume = {199},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Superintegrable systems with algebraic and rational integrals of motion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 218
EP  - 234
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/
LA  - ru
ID  - TMF_2019_199_2_a3
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Superintegrable systems with algebraic and rational integrals of motion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 218-234
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/
%G ru
%F TMF_2019_199_2_a3
A. V. Tsiganov. Superintegrable systems with algebraic and rational integrals of motion. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 218-234. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a3/

[1] L. Euler, “Probleme un corps étant attiré en raison réciproque quarrée des distances vers deux points fixes donnés, trouver les cas oú a courbe décrite par ce corps sera algébrique”, Memoires de l'Academie des sciences de Berlin, 16 (1767), 228–249, \par http://eulerarchive.maa.org/docs/originals/E337.pdf

[2] L. Euler, “De motu corporis ad duo centra virium fixa attracti”, Novi commentarii Academiae Scientiarum Petropolitanae, 10 (1766), 207–242, \par http://eulerarchive.maa.org//docs/originals/E301.pdf

[3] L. Euler, “De motu corporis ad duo centra virium fixa attracti”, Novi Commentarii Academiae Scientiarum Petropolitanae, 11 (1767), 152–184, \par, 1767 http://eulerarchive.maa.org/docs/originals/E328.pdf

[4] L. Euler, Institutionum calculi integralis, v. 1, Acta Petropolitana, Lipsiae et Berolini, 1761, \par https://archive.org/details/institutionescal020326mbp

[5] J. L. Lagrange, “Recherches sur le mouvement d'un corps qui est attiré vers deux centres fixes (Miscellanea Taurinensia, t. 4, 1766–1769)”, Joseph Louis de Lagrange – {ØE}uvres complètes, v. 2, Gauthier-Villars, Paris, 1868, 68–121, \par https://gallica.bnf.fr/ark:/12148/bpt6k215570z/f68

[6] Zh. Lagranzh, Analiticheskaya mekhanika, ONTI, M., L., 1950; J.-L. Lagrange, Mécanique analytique, Gauthier-Villars, Paris, 1888 | Zbl

[7] A. G. Greenhill, The Applications of Elliptic Functions, Macmillan, London, 1892 | MR | Zbl

[8] F. Richelot, “Ueber die Integration eines merkwürdigen Systems von Differentialgleichungen”, J. Reine Angew. Math., 1842:23 (1842), 354–369 | DOI | MR

[9] C. G. J. Jacobi, “Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Formihrer vollständigen algebraischen Integralgleichungen”, J. Reine Angew. Math., 1846:32 (1846), 220–227, \par https://gallica.bnf.fr/ark:/12148/bpt6k90215d/f145 | DOI | MR

[10] K. Weierstrass, “Bemerkungen über die Integration der hyperelliptischen differential-Gleichungen”, Mathematische Werke, v. I, Mayer and Müller, Berlin, 1895, 267–274

[11] Yu. A. Grigoryev, V. A. Khudobakhshov, A. V. Tsiganov, “On the Euler superintegrable systems”, J. Phys. A: Math. Theor., 42:7 (2009), 075202, 11 pp. | DOI | MR

[12] A. V. Tsiganov, “Addition theorems and the Drach superintegrable systems”, J. Phys. A: Math. Theor., 41:33 (2008), 335204, 16 pp. | DOI | MR

[13] A. V. Tsiganov, “Leonard Euler: addition theorems and superintegrable systems”, Regul. Chaot. Dyn., 14:3 (2009), 389–406, arXiv: 0810.1100 | DOI | MR

[14] A. V. Tsiganov, “On the superintegrable Richelot systems”, J. Phys. A: Math. Theor., 43:5 (2010), 055201, 14 pp., arXiv: 0909.2923 | DOI | MR

[15] A. V. Tsiganov, “Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates”, SIGMA, 8 (2012), 031, 9 pp. | DOI | MR

[16] A. V. Tsiganov, “Bäcklund transformations and divisor doubling”, J. Geom. Phys., 126 (2018), 148–158, arXiv: 1702.03642 | DOI | MR

[17] A. V. Tsyganov, “O diskretizatsii gamiltonovykh sistem i teorii peresechenii”, TMF, 197:3 (2018), 475–492 | DOI | DOI

[18] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren (eds.), Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl

[19] P. Stäckel, Über die Integration der Hamilton-Jacobischen differential Gleichung mittelst Separation der variabeln Habilitationsschrift, Universität Halle, Halle, 1891

[20] A. V. Tsiganov, Transformation of the Stäckel matrices preserving superintegrability, arXiv: 1809.05824

[21] Yu. A. Grigoriev, A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096, arXiv: 1712.07321 | DOI | MR