Quasi-Stäckel Hamiltonians and electron dynamics in an external field in the two-dimensional case
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 210-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the two-dimensional case, we construct nondegenerate Hamiltonians that describe electron motion in an electromagnetic field and have additional integrals of motion quadratic in momentum. We completely classify the quasi-Stäckel Hamiltonians related to these systems in the cases where the leading approximation in momenta of the additional integral depends quadratically on the coordinates. We consider reductions of such systems that are symmetric under rotation about the $z$ axis.
Keywords: classical electrodynamics, separation of variables, algebraic curve.
@article{TMF_2019_199_2_a2,
     author = {V. G. Marikhin},
     title = {Quasi-St\"ackel {Hamiltonians} and electron dynamics in an~external field in the~two-dimensional case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--217},
     year = {2019},
     volume = {199},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a2/}
}
TY  - JOUR
AU  - V. G. Marikhin
TI  - Quasi-Stäckel Hamiltonians and electron dynamics in an external field in the two-dimensional case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 210
EP  - 217
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a2/
LA  - ru
ID  - TMF_2019_199_2_a2
ER  - 
%0 Journal Article
%A V. G. Marikhin
%T Quasi-Stäckel Hamiltonians and electron dynamics in an external field in the two-dimensional case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 210-217
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a2/
%G ru
%F TMF_2019_199_2_a2
V. G. Marikhin. Quasi-Stäckel Hamiltonians and electron dynamics in an external field in the two-dimensional case. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 210-217. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a2/

[1] B. Dorizzi, B. Grammaticos, A. Ramani, P. Winternitz, “Integrable Hamiltonian systems with velocity-dependent potentials”, J. Math. Phys., 26:12 (1985), 3070–3079 | DOI | MR

[2] E. V. Ferapontov, A. P. Fordy, “Commuting quadratic Hamiltonians with velocity dependent potentials”, Rep. Math. Phys., 44:1–2 (1999), 71–80 | DOI

[3] E. V. Ferapontov, A. P. Fordy, “Non-homogeneous systems of hydrodynamic type, related to quadratic Hamiltonians with electromagnetic term”, Physica D, 108:4 (1997), 350–364 | DOI | MR

[4] H. M. Yehia, “Generalized natural mechanical systems of two degrees of freedom with quadratic integrals”, J. Phys. A: Math. Gen., 25:1 (1992), 197–221 | DOI | MR

[5] E. McSween, P. Winternitz, “Integrable and superintegrable Hamiltonian systems in magnetic fields”, J. Math. Phys., 41:5 (2000), 2957–2967 | DOI | MR

[6] V. G. Marikhin, V. V. Sokolov, “Transformation of a pair of commuting Hamiltonians quadratic in momenta to canonical form and real partial separation of variables for the Clebsch top”, Regul. Chaotic Dyn., 15:6 (2010), 652–658 | DOI | MR

[7] V. G. Marikhin, “O klassicheskom dvizhenii zaryazhennoi chastitsy v elektromagnitnom pole v dvumerii s dopolnitelnym kvadratichnym integralom dvizheniya”, Pisma v ZhETF, 97:7 (2013), 491–495 | DOI | DOI