@article{TMF_2019_199_2_a1,
author = {G. F. Helminck and E. A. Panasenko},
title = {Expressions in {Fredholm} determinants for solutions of the~strict {KP} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {193--209},
year = {2019},
volume = {199},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a1/}
}
TY - JOUR AU - G. F. Helminck AU - E. A. Panasenko TI - Expressions in Fredholm determinants for solutions of the strict KP hierarchy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 193 EP - 209 VL - 199 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a1/ LA - ru ID - TMF_2019_199_2_a1 ER -
G. F. Helminck; E. A. Panasenko. Expressions in Fredholm determinants for solutions of the strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 193-209. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a1/
[1] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl
[2] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Cauchy problems related to integrable deformations of pseudo differential operators”, J. Geom. Phys., 85 (2014), 196–205 | DOI | MR
[3] G. F. Khelmink, E. A. Panasenko, “Geometricheskie resheniya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 198:1 (2019), 54–78 | DOI
[4] G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “A geometric construction of solutions of the strict $\mathrm{dKP}(\Lambda_{0})$ hierarchy”, J. Geom. Phys., 131 (2018), 189–203 | DOI | MR
[5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR
[6] M. Adler, P. van Moerbeke, P. VanHaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer, Berlin | DOI | MR
[7] A. Pressli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | Zbl
[8] M. F. Atiyah, K-Theory, W. A. Benjamin, New York, 1967 | MR
[9] N. H. Kuiper, “On the general linear group in Hilbert space”, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1964, ZW-011, 9 pp. | MR
[10] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 | MR | Zbl
[11] A. Grothendieck, “La théorie de Fredholm”, Bull. Soc. Math. France, 1956, no. 84, 319–384 | DOI | MR
[12] B. Simon, Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series, 35, Cambridge Univ. Press, Cambridge, 1979 | MR | Zbl
[13] G. F. Helminck, A. G. Helminck, “The structure of Hilbert flag varieties”, Publ. Res. Inst. Math. Sci., 30:3 (1994), 401–441 | DOI | MR
[14] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl
[15] G. F. Khelmink, E. A. Panasenko, S. V. Polenkova, “Bilineinye uravneniya dlya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 185:3 (2015), 512–526 | DOI | DOI | MR