Factorization of Darboux–Laplace transformations for discrete hyperbolic operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 175-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify elementary Darboux–Laplace transformations for semidiscrete and discrete second-order hyperbolic operators. We prove that there are two types of elementary Darboux–Laplace transformations in the $($semi$)$discrete case as in the continuous case: Darboux transformations constructed from a particular element in the kernel of the initial hyperbolic operator and classical Laplace transformations that are defined by the operator itself and are independent of the choice of an element in the kernel. We prove that on the level of equivalence classes in the discrete case, any Darboux–Laplace transformation is a composition of elementary transformations.
Mots-clés : Darboux–Laplace transformation
Keywords: discrete hyperbolic operator, factorization.
@article{TMF_2019_199_2_a0,
     author = {S. V. Smirnov},
     title = {Factorization of {Darboux{\textendash}Laplace} transformations for discrete hyperbolic operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {175--192},
     year = {2019},
     volume = {199},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/}
}
TY  - JOUR
AU  - S. V. Smirnov
TI  - Factorization of Darboux–Laplace transformations for discrete hyperbolic operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 175
EP  - 192
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/
LA  - ru
ID  - TMF_2019_199_2_a0
ER  - 
%0 Journal Article
%A S. V. Smirnov
%T Factorization of Darboux–Laplace transformations for discrete hyperbolic operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 175-192
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/
%G ru
%F TMF_2019_199_2_a0
S. V. Smirnov. Factorization of Darboux–Laplace transformations for discrete hyperbolic operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/

[1] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991 | MR

[2] V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtsev–Petviashvili equation, depending on functional parameters”, Lett. Math. Phys., 3:3 (1979), 213–216 | DOI | MR

[3] V. B. Matveev, M. A. Salle, “Differential-difference evolution equations. II. Darboux transformation for the Toda lattice”, Lett. Math. Phys., 3:5 (1979), 425–429 | DOI | MR

[4] A. P. Veselov, A. B. Shabat, “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shredingera”, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | DOI | MR | Zbl

[5] I. T. Khabibullin, “Obryvy tsepochki Tody i problema reduktsii”, TMF, 143:1 (2005), 33–48 | DOI | MR | Zbl

[6] S. V. Smirnov, “Poludiskretnye tsepochki Tody”, TMF, 172:3 (2012), 387–404 | DOI | DOI | MR | Zbl

[7] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR

[8] G. Darboux, Leçons sur la théorie générale des surfaces, v. 2, Gauthier-Villars, Paris, 1915

[9] A. Shabat, “The infinite-dimensional dressing dynamical system”, Inverse Problems, 8:2 (1992), 303–308 | DOI | MR

[10] V. G. Bagrov, B. F. Samsonov, “Preobrazovanie Darbu, faktorizatsiya, supersimmetriya v odnomernoi kvantovoi mekhanike”, TMF, 104:2 (1995), 356–367 | DOI | MR | Zbl

[11] A. B. Shabat, “K teorii preobrazovanii Laplasa–Darbu”, TMF, 103:1 (1995), 170–175 | DOI | MR | Zbl

[12] A. N. Leznov, “O polnoi integriruemosti odnoi nelineinoi sistemy differentsialnykh uravnenii v chastnykh proizvodnykh v dvumernom prostranstve”, TMF, 42:3 (1980), 343–349 | DOI | MR | Zbl

[13] V. E. Adler, S. Ya. Startsev, “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | DOI | MR | Zbl

[14] V. E. Adler, V. G. Marikhin, A. B. Shabat, “Lagranzhevy tsepochki i kanonicheskie preobrazovaniya Beklunda”, TMF, 129:2 (2001), 163–168 | DOI | DOI | MR | Zbl

[15] E. S. Shemyakova, “Preobrazovaniya Laplasa kak edinstvennye vyrozhdennye preobrazovaniya Darbu pervogo poryadka”, Programmirovanie, 38:2 (2012), 72–76

[16] E. Shemyakova, “Proof of the completeness of Darboux Wronskian formulae for order two”, Canad. J. Math., 65:3 (2013), 655–674 | DOI | MR

[17] E. S. Shemyakova, “Preobrazovaniya Darbu dlya faktorizuemykh operatorov Laplasa”, Programmirovanie, 40:3 (2014), 59–68

[18] E. Shemyakova, Classification of Darboux transformations for operators of the form $\partial_x\,\partial_y+a\,\partial_x+b\,\partial_y+c$, arXiv: 1304.7063

[19] E. Shemyakova, “Orbits of Darboux grupoid for hyperbolic operators of order three”, Geometric Methods in Physics (Białowie.{z}a, Poland, June 29 – July 5, 2014), Trends in Mathematics, 71, eds. P. Kielanowski, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer, Cham, 2015, 303–312, arXiv: 1411.6491 | MR

[20] D. Hobby, E. Shemyakova, “Classification of multidimensional Darboux transformations: first order and continued type”, SIGMA, 13 (2017), 010, 20 pp. | DOI | MR

[21] F. F. Voronov, Sh. Gill, E. S. Shemyakova, “Preobrazovaniya Darbu dlya differentsialnykh operatorov na superpryamoi”, UMN, 70:6(426) (2015), 207–208 | DOI | DOI | MR | Zbl

[22] S. Li, E. Shemyakova, Th. Voronov, “Differential operators on the superline, Berezinians, and Darboux transformations”, Lett. Math. Phys., 107:9 (2017), 1686–1714 | DOI | MR

[23] A. Doliwa, M. Nieszporski, “Darboux transformations for linear operators on two-dimensional regular lattices”, J. Phys. A: Math. Theor., 42:45 (2009), 454001, 27 pp. | DOI | MR

[24] C. Zhang, L. Peng, D. Zhang, Discrete Crum's theorems and integrable lattice equations, arXiv: 1802.10044

[25] D. K. Demskoi, D. T. Tran, “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991 | DOI | MR

[26] I. A. Dynnikov, S. V. Smirnov, “Tochno reshaemye tsiklicheskie $q$-tsepochki Darbu”, UMN, 57:6(348), 183–184 | DOI | DOI | MR | Zbl

[27] S. V. Smirnov, “Tsiklicheskie $q$-tsepochki Darbu”, Algebra i analiz, 15:5 (2003), 228–253 | DOI | MR | Zbl