Factorization of Darboux--Laplace transformations for discrete hyperbolic operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 175-192
Voir la notice de l'article provenant de la source Math-Net.Ru
We classify elementary Darboux–Laplace transformations for semidiscrete and discrete second-order hyperbolic operators. We prove that there are two types of elementary Darboux–Laplace transformations in the $($semi$)$discrete case as in the continuous case: Darboux transformations constructed from a particular element in the kernel of the initial hyperbolic operator and classical Laplace transformations that are defined by the operator itself and are independent of the choice of an element in the kernel. We prove that on the level of equivalence classes in the discrete case, any Darboux–Laplace transformation is a composition of elementary transformations.
Mots-clés :
Darboux–Laplace transformation
Keywords: discrete hyperbolic operator, factorization.
Keywords: discrete hyperbolic operator, factorization.
@article{TMF_2019_199_2_a0,
author = {S. V. Smirnov},
title = {Factorization of {Darboux--Laplace} transformations for discrete hyperbolic operators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {175--192},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/}
}
TY - JOUR AU - S. V. Smirnov TI - Factorization of Darboux--Laplace transformations for discrete hyperbolic operators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 175 EP - 192 VL - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/ LA - ru ID - TMF_2019_199_2_a0 ER -
S. V. Smirnov. Factorization of Darboux--Laplace transformations for discrete hyperbolic operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a0/