Two-dimensional field reduction of the general theory of relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 142-153
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of general relativity theory, we consider a space–time whose metric depends on only one coordinate and time. We choose a gauge class such that all the constraint conditions of the theory of gravity as a gauge theory are explicitly solved and construct a Hamiltonian depending only on dynamical physical variables $($gravitons$)$. We show that such a Hamiltonian can be obtained from the Polyakov action for a string in an anti-de Sitter background space with a "string constant" depending on time.
Keywords:
general relativity theory, gravitational wave, string, anti-de Sitter space, gauge theory.
@article{TMF_2019_199_1_a8,
author = {V. V. Losyakov and I. V. Tyutin},
title = {Two-dimensional field reduction of the~general theory of relativity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {142--153},
year = {2019},
volume = {199},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a8/}
}
V. V. Losyakov; I. V. Tyutin. Two-dimensional field reduction of the general theory of relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 142-153. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a8/
[1] B. P. Abbott, R. Abbott, T. D. Abbott et al. [LIGO Scientific Collaboration and Virgo Collaboration], “Observation of gravitational waves from a binary black hole merger”, Phys. Rev. Lett., 116:6 (2016), 061102, 16 pp., arXiv: 1602.03837 | DOI | MR
[2] P. A. M. Dirac, “The theory of gravitation in Hamiltonian form”, Proc. Roy. Soc. London Ser. A, 246:1246 (1958), 333–343 | DOI | MR
[3] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | DOI | MR | MR | Zbl | Zbl
[4] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1973 | MR
[5] A. M. Polyakov, Kalibrovochnye polya i struny, ITF im. L. D. Landau, M., 1995