A unitarity criterion for the partial $S$-matrix of resonance scattering
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 123-133
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the influence of $N$ long-lived states characterized by resonance energies $E_i$ and widths $\Gamma_i(E)$ on the elastic scattering process and obtain an expression for the partial $S$-matrix $S_l(E)$ in the form of a sum over the resonance levels $($poles$)$ at which the residues have the form $\Gamma_i\prod_{\substack{k=1,\\k\ne i}}^N\gamma_{ik}$, where $\gamma_{ik}={(z_i-z_k^*)\imath/2(z_i-z_k)}$ and $z_i=E_i-\imath\Gamma_i/2$. We show that a necessary condition for the unitarity of the partial $S$-matrix in the presence of $N$ resonance levels can be written as $\sum_{i=1}^N \Gamma_i(E)\prod_{\substack{k=1,\\k\ne i}}^N\gamma_{ik}= \sum_{i=1}^N\Gamma_i(E)$.
Mots-clés : partial $S$-matrix, pole
Keywords: resonance level, unitarity, elastic scattering, necessary criterion for unitarity.
@article{TMF_2019_199_1_a6,
     author = {V. A. Khangulyan},
     title = {A~unitarity criterion for the~partial $S$-matrix of resonance scattering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {123--133},
     year = {2019},
     volume = {199},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a6/}
}
TY  - JOUR
AU  - V. A. Khangulyan
TI  - A unitarity criterion for the partial $S$-matrix of resonance scattering
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 123
EP  - 133
VL  - 199
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a6/
LA  - ru
ID  - TMF_2019_199_1_a6
ER  - 
%0 Journal Article
%A V. A. Khangulyan
%T A unitarity criterion for the partial $S$-matrix of resonance scattering
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 123-133
%V 199
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a6/
%G ru
%F TMF_2019_199_1_a6
V. A. Khangulyan. A unitarity criterion for the partial $S$-matrix of resonance scattering. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 123-133. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a6/

[1] V. Gaitler, Kvantovaya teoriya izlucheniya, IL, M., 1956 | Zbl

[2] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, Mir, M., 1965 | MR | Zbl

[3] Dzh. Teilor, Teoriya rasseyaniya, Mir, M., 1975

[4] V. A. Khangulyan, I. S. Shapiro, Izbrannye voprosy teorii yadra. Ch. 2. Analiticheskaya struktura amplitud rasseyaniya, NIYaU MIFI, M., 2011

[5] A. I. Akhiezer, I. Ya. Pomeranchuk, “K teorii rezonansnogo rasseyaniya chastits”, ZhETF, 18:7 (1948), 603–608

[6] N. Bohr, “Neutron capture and nuclear constitution”, Nature, 137:3461 (1936), 344–348 | DOI

[7] N. Bohr, “Transmutations of atomic nuclei”, Science, 86:2225 (1937), 161–165

[8] L. D. Landau, “K statisticheskoi teorii yader”, ZhETF, 7, 819–824

[9] T. Ericson, “The statistical model and nuclear level densities”, Adv. Phys., 9:36 (1960), 425–511 | DOI

[10] G. A. Bete, Fizika yadra, GITTL, M.-L., 1948; | DOI

[11] I. Yu. Kobzarev, Teoriya perekryvayuschikhsya urovnei, MIFI, M., 1971

[12] I. S. Shapiro, “Perekryvayuschiesya urovni i gigantskie rezonansy”, Problemy sovremennoi yadernoi fiziki, Sbornik dokladov na Vtorom problemnom simpoziume po fizike yadra (Novosibirsk, 12–19 iyunya 1970\;g.), Nauka, M., 1971, 273–284

[13] A. E. Kudryavtsev, “K teorii rezonansnykh reaktsii v oblasti perekryvayuschikhsya urovnei”, YaF, 10:2 (1969), 309–314

[14] V. A. Khangulyan, “Povedenie secheniya uprugogo rasseyaniya $\sigma(E)$ v okrestnosti dvukh perekryvayuschikhsya urovnei s ravnymi rezonansnymi energiyami”, YaF, 81:1 (2018), 25–31 | DOI | DOI