Quantum field theory description of processes passing at finite space and time intervals
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 104-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a new approach to the quantum field theory description of processes passing at finite space–time intervals. The formalism is based on the Feynman diagram technique in the coordinate representation supplemented with modified rules for the transition to the momentum representation reflecting specific experimental situations. This effectively implies that only the particle propagators in the momentum representation are modified, while the standard Feynman rules in the momentum representation remain unchanged. No wave packets are used in the approach, i.e., the initial and final states of particles are described by plane waves, which significantly simplifies the calculations. Three processes – neutrino oscillations, unstable particle decay, and neutral kaon oscillations – are used as examples to show that the proposed approach correctly reproduces the well-known results.
Keywords: quantum field theory
Mots-clés : Feynman diagram technique.
@article{TMF_2019_199_1_a5,
     author = {I. P. Volobuev and V. O. Egorov},
     title = {Quantum field theory description of processes passing at finite space and time intervals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {104--122},
     year = {2019},
     volume = {199},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a5/}
}
TY  - JOUR
AU  - I. P. Volobuev
AU  - V. O. Egorov
TI  - Quantum field theory description of processes passing at finite space and time intervals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 104
EP  - 122
VL  - 199
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a5/
LA  - ru
ID  - TMF_2019_199_1_a5
ER  - 
%0 Journal Article
%A I. P. Volobuev
%A V. O. Egorov
%T Quantum field theory description of processes passing at finite space and time intervals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 104-122
%V 199
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a5/
%G ru
%F TMF_2019_199_1_a5
I. P. Volobuev; V. O. Egorov. Quantum field theory description of processes passing at finite space and time intervals. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 104-122. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a5/

[1] A. Pais, O. Piccioni, “Note on the decay and absorption of the $\theta^0$”, Phys. Rev., 100:5 (1955), 1487–1489 | DOI

[2] B. M. Pontekorvo, “Mezonii i antimezonii”, ZhETF, 33:2 (1957), 549–551;

[3] V. N. Gribov, B. Pontecorvo, “Neutrino astronomy and lepton charge”, Phys. Lett. B, 28:7 (1969), 493–496 | DOI

[4] R. Belušević, Neutral Kaons, Springer Tracts in Modern Physics, 153, Springer, Berlin, 1999 | DOI

[5] C. Giunti, C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford Univ. Press, New York, 2007 | DOI

[6] S. Bilenky, Introduction to the Physics of Massive and Mixed Neutrinos, Lecture Notes in Physics, 817, Springer, Berlin–Heidelberg, 2010 | DOI

[7] K. A. Olive, K. Agashe, C. Amsler et al. [Particle Data Group], “Review of particle physics”, Chinese Phys. C, 38:9 (2014), 090001, 1676 pp. | DOI

[8] C. Giunti, C. W. Kim, J. A. Lee, U. W. Lee, “Treatment of neutrino oscillations without resort to weak eigenstates”, Phys. Rev. D, 48:9 (1993), 4310–4317, arXiv: hep-ph/9305276 | DOI

[9] W. Grimus, P. Stockinger, “Real oscillations of virtual neutrinos”, Phys. Rev. D, 54:5 (1996), 3414–3419, arXiv: hep-ph/9603430 | DOI

[10] M. Beuthe, “Oscillations of neutrinos and mesons in quantum field theory”, Phys. Rept., 375:2–3 (2003), 105–218, arXiv: hep-ph/0109119 | DOI | MR

[11] A. G. Cohen, S. L. Glashow, Z. Ligeti, “Disentangling neutrino oscillations”, Phys. Lett. B, 678:2 (2009), 191–196, arXiv: 0810.4602 | DOI

[12] A. E. Lobanov, “Ostsillyatsii chastits v Standartnoi modeli”, TMF, 192:1 (2017), 70–88 | DOI | DOI | MR

[13] I. P. Volobuev, “Quantum field-theoretical description of neutrino and neutral kaon oscillations”, Internat. J. Modern Phys. A, 33:13 (2018), 1850075, 14 pp., arXiv: 1703.08070 | DOI | MR

[14] V. O. Egorov, I. P. Volobuev, “Neutrino oscillation processes in a quantum-field-theoretical approach”, Phys. Rev. D, 97:9 (2018), 093002, arXiv: 1709.09915 | DOI

[15] V. O. Egorov, I. P. Volobuev, Neutrino oscillation processes with a change of lepton flavor in quantum field-theoretical approach, arXiv: 1712.04335

[16] S. T. Petcov, “The processes $\mu \to e \Gamma$, $\mu \to ee$, anti-e, $\nu' \to \nu \gamma$ in the Weinberg–Salam model with neutrino mixing”, YaF, 25 (1977), 641–648 | MR

[17] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[18] R. P. Feynman, “The theory of positrons”, Phys. Rev., 76:6 (1949), 749–759 | DOI

[19] R. P. Feynman, “Space-time approach to quantum electrodynamics”, Phys. Rev., 76:6 (1949), 769–789 | DOI | MR

[20] Dzh. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, v. 1, Relyativistskaya kvantovaya mekhanika, Nauka, M., 1978 | MR

[21] R. G. Stuart, “Unstable particles”, arXiv: hep-ph/9504308

[22] L. B. Okun, Leptony i kvarki, Nauka, M., 1990

[23] N. F. Nelipa, Vvedenie v teoriyu silno-vzaimodeistvuyuschikh elementarnykh chastits, Atomizdat, M., 1970