Note on Schramm--Loewner evolution for superconformal algebras
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 33-46
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Using the group-theoretical formulation of Schramm–Loewner evolution (SLE), we propose variants of SLE related to superconformal algebras. The corresponding stochastic differential equation is derived from a random process on an infinite-dimensional Lie group. We consider random processes on a certain kind of groups of superconformal transformations generated by exponentiated elements of the Grassmann envelop of the superconformal algebras. We present a method for obtaining local martingales from a representation of the superconformal algebra after integration over the Grassmann variables.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Schramm–Loewner evolution, conformal field theory
Mots-clés : superconformal algebra.
                    
                  
                
                
                Mots-clés : superconformal algebra.
@article{TMF_2019_199_1_a1,
     author = {S. Koshida},
     title = {Note on {Schramm--Loewner} evolution for superconformal algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a1/}
}
                      
                      
                    S. Koshida. Note on Schramm--Loewner evolution for superconformal algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 33-46. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a1/
