Singular vectors of the~Ding--Iohara--Miki algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 3-32
Voir la notice de l'article provenant de la source Math-Net.Ru
We review properties of generalized Macdonald functions arising from the AGT correspondence. In particular, we explain a coincidence between generalized Macdonald functions and singular vectors of a certain algebra $\mathcal{A}(N)$ obtained using the level-$(N,0)$ representation (horizontal representation) of the Ding–Iohara–Miki algebra. Moreover, we give a factored formula for the Kac determinant of $\mathcal{A}(N)$, which proves the conjecture that the Poincaré–Birkhoff–Witt-type vectors of the algebra $\mathcal{A}(N)$ form a basis in its representation space.
Keywords:
AGT correspondence, Macdonald symmetric function, Ding–Iohara–Miki algebra, singular vector.
@article{TMF_2019_199_1_a0,
author = {Y. Ohkubo},
title = {Singular vectors of {the~Ding--Iohara--Miki} algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--32},
publisher = {mathdoc},
volume = {199},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a0/}
}
Y. Ohkubo. Singular vectors of the~Ding--Iohara--Miki algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a0/