Singular vectors of the~Ding--Iohara--Miki algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 3-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We review properties of generalized Macdonald functions arising from the AGT correspondence. In particular, we explain a coincidence between generalized Macdonald functions and singular vectors of a certain algebra $\mathcal{A}(N)$ obtained using the level-$(N,0)$ representation (horizontal representation) of the Ding–Iohara–Miki algebra. Moreover, we give a factored formula for the Kac determinant of $\mathcal{A}(N)$, which proves the conjecture that the Poincaré–Birkhoff–Witt-type vectors of the algebra $\mathcal{A}(N)$ form a basis in its representation space.
Keywords: AGT correspondence, Macdonald symmetric function, Ding–Iohara–Miki algebra, singular vector.
@article{TMF_2019_199_1_a0,
     author = {Y. Ohkubo},
     title = {Singular vectors of {the~Ding--Iohara--Miki} algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--32},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a0/}
}
TY  - JOUR
AU  - Y. Ohkubo
TI  - Singular vectors of the~Ding--Iohara--Miki algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 3
EP  - 32
VL  - 199
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a0/
LA  - ru
ID  - TMF_2019_199_1_a0
ER  - 
%0 Journal Article
%A Y. Ohkubo
%T Singular vectors of the~Ding--Iohara--Miki algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 3-32
%V 199
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a0/
%G ru
%F TMF_2019_199_1_a0
Y. Ohkubo. Singular vectors of the~Ding--Iohara--Miki algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/TMF_2019_199_1_a0/