Conformal Ricci collineations of static space--times with maximal symmetric transverse spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 532-544

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore conformal Ricci collineations $($CRCs$)$ for static space–times with maximal symmetric transverse spaces. Solving the CRC equations in the degenerate and nondegenerate cases, we show that the dimension of the Lie algebra of CRCs for these space–times can be $6$, $7$, or $15$ for a nondegenerate Ricci tensor, while a degenerate Ricci tensor produces an infinite number of CRCs.
Keywords: conformal Ricci collineation, Ricci collineation, static space–time with a maximal symmetric transverse space.
@article{TMF_2019_198_3_a8,
     author = {T. Hussain and F. Khan},
     title = {Conformal {Ricci} collineations of static space--times with maximal symmetric transverse spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {532--544},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/}
}
TY  - JOUR
AU  - T. Hussain
AU  - F. Khan
TI  - Conformal Ricci collineations of static space--times with maximal symmetric transverse spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 532
EP  - 544
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/
LA  - ru
ID  - TMF_2019_198_3_a8
ER  - 
%0 Journal Article
%A T. Hussain
%A F. Khan
%T Conformal Ricci collineations of static space--times with maximal symmetric transverse spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 532-544
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/
%G ru
%F TMF_2019_198_3_a8
T. Hussain; F. Khan. Conformal Ricci collineations of static space--times with maximal symmetric transverse spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 532-544. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/