Conformal Ricci collineations of static space–times with maximal symmetric transverse spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 532-544
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explore conformal Ricci collineations $($CRCs$)$ for static space–times with maximal symmetric transverse spaces. Solving the CRC equations in the degenerate and nondegenerate cases, we show that the dimension of the Lie algebra of CRCs for these space–times can be $6$, $7$, or $15$ for a nondegenerate Ricci tensor, while a degenerate Ricci tensor produces an infinite number of CRCs.
Keywords: conformal Ricci collineation, Ricci collineation, static space–time with a maximal symmetric transverse space.
@article{TMF_2019_198_3_a8,
     author = {T. Hussain and F. Khan},
     title = {Conformal {Ricci} collineations of static space{\textendash}times with maximal symmetric transverse spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {532--544},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/}
}
TY  - JOUR
AU  - T. Hussain
AU  - F. Khan
TI  - Conformal Ricci collineations of static space–times with maximal symmetric transverse spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 532
EP  - 544
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/
LA  - ru
ID  - TMF_2019_198_3_a8
ER  - 
%0 Journal Article
%A T. Hussain
%A F. Khan
%T Conformal Ricci collineations of static space–times with maximal symmetric transverse spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 532-544
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/
%G ru
%F TMF_2019_198_3_a8
T. Hussain; F. Khan. Conformal Ricci collineations of static space–times with maximal symmetric transverse spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 532-544. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a8/

[1] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[2] A. Z. Petrov, Prostranstva Einshteina, Fizmatgiz, M., 1961 | MR

[3] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977

[4] G. S. Hall, Symmetries and Curvature Structure in General Relativity, Lecture Notes in Physics, 46, World Sci., Singapore, 2004 | DOI | MR

[5] K. L. Duggal, “Curvature inheritance symmetry in Riemannian spaces with applications to fluid space times”, J. Math. Phys., 33:9 (1992), 2989–2997 | DOI | MR

[6] A. H. Bokhari, A. R. Kashif, “Curvature collineations of some static spherically symmetric space-times”, J. Math. Phys., 37:7 (1996), 3498–3504 | DOI | MR

[7] U. Camci, H. Baysal, .{I}. Tarhan, İ. Yilmaz, İ. Yavuz, “Ricci collineations of the Bianchi types I and III, and Kantowski–Sachs spacetimes”, Internat. J. Modern Phys. D, 10:5 (2001), 751–765 | DOI | MR | Zbl

[8] U. Camci, İ. Yavuz, “Classifications of Kantowski–Sachs, Bianchi types I and III spacetimes according to Ricci collineations”, Internat. J. Modern Phys. D, 12:1 (2003), 89–100 | DOI | MR | Zbl

[9] U. Camci, M. Sharif, “Matter collineations in Kantowski–Sachs, Bianchi types I and III spacetimes”, Gen. Rel. Grav., 35:1 (2003), 97–109 | DOI | MR

[10] U. Camci, E. Sahin, “Matter collineation classification of Bianchi type II spacetime”, Gen. Rel. Grav., 38:9 (2006), 1331–1346 | DOI | MR

[11] U. Camci, “Matter collineations of Bianchi V spacetime”, Internat. J. Modern Phys. D, 14:6 (2005), 1023–1036 | DOI | MR

[12] U. Camci, İ. Türkyilmaz, “Ricci collineations in perfect fluid Bianchi V spacetime”, Gen. Rel. Grav., 36:9 (2004), 2005–2019 | DOI | MR | Zbl

[13] U. Camci, A. Barnes, “Ricci collineations in Friedmann–Robertson–Walker spacetimes”, Class. Quantum Grav., 19:2 (2002), 393–404 | DOI | MR | Zbl

[14] J. Llosa, “Collineations of a symmetric 2-covariant tensor: Ricci collineations”, J. Math. Phys., 54:7 (2013), 072501, 13 pp. | DOI | MR | Zbl

[15] L. Herrera, J. Jiménez, L. Leal, J. Ponce de Leon, M. Esculpi, V. Galina, “Anisotropic fluids and conformal motions in general relativity”, J. Math. Phys., 25:11 (1984), 3274–3278 pp. | DOI | MR

[16] D. P. Mason, R. Maartens, “Kinematics and dynamics of conformal collineations in relativity”, J. Math. Phys., 28:8 (1987), 2182–2186 | DOI | MR

[17] H. Baysal, U. Camci, I. Tarhan, I. Yilmaz, I. Yavuz, “Conformal collineations in string cosmology”, Internat. J. Modern Phys. D, 11:3 (2002), 463–469 | DOI | MR

[18] D. P. Mason, M. Tsamparlis, “Spacelike conformal Killing vectors and spacelike congruences”, J. Math. Phys., 26:11 (1985), 2881–2901 | DOI

[19] M. Sharif, U. Sheikh, “Timelike and spacelike matter inheritance vectors in specific forms of energy-momentum tensor”, Internat. J. Modern Phys. A, 21:15 (2006), 3213–3234 | DOI | MR

[20] U. Camci, A. Qadir, K. Saifullah, “Conformal Ricci collineations of static spherically symmetric spacetimes”, Commun. Theor. Phys., 49:6 (2008), 1527–1532 | DOI | MR

[21] T. Hussain, S. S. Akhtar, S. Khan, “Ricci inheritance collineation in Bianchi type I spacetimes”, Eur. Phys. J. Plus, 130 (2015), 44, 10 pp. | DOI

[22] T. Hussain, S. S. Akhtar, A. H. Bokhari, S. Khan, “Ricci inheritance collineations in Bianchi type II spacetime”, Modern Phys. Lett. A, 31:17 (2016), 1650102, 16 pp. | DOI

[23] T. Hussain, A. Musharaf, S. Khan, “Ricci inheritance collineations in Kantowski–Sachs spacetimes”, Internat. J. Geom. Meth. Modern Phys., 13:5 (2016), 1650057, 14 pp. | DOI

[24] F. Khan, T. Hussain, S. S. Akhtar, “Conformal Ricci collineations in LRS Bianchi type V spacetimes with perfect fluid matter”, Modern Phys. Lett. A, 32:24 (2017), 1750124, 11 pp. | DOI | MR

[25] H. Baofa, “Kantowski–Sachs cosmological model and an inflationary era”, Internat. J. Theor. Phys., 30:8 (1991), 1121–1125 | DOI

[26] M. Sharif, “Matter collineations of static spacetimes with maximal symmetric transverse spaces”, Acta Physic. Polon. B, 38:6 (2007), 2003–2010 | MR