Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 489-522
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the quantum mechanical equivalence of the metrics of a centrally symmetric uncharged gravitational field. We consider the static Schwarzschild metric in spherical and isotropic coordinates, stationary Eddington–Finkelstein and Painlevé–Gullstrand metrics, and nonstationary Lemaître–Finkelstein and Kruskal–Szekeres metrics. When the real radial functions of the Dirac equation and of the second-order equation in the Schwarzschild field are used, the domain of wave functions is restricted to the range $r>r_0$, where $r_0$ is the radius of the event horizon. A corresponding constraint also exists in other coordinates for all considered metrics. For the considered metrics, the second-order equations admit the existence of degenerate stationary bound states of fermions with zero energy. As a result, we prove that physically meaningful results for a quantum mechanical description of a particle interaction with a gravitational field are independent of the choice of a solution for the centrally symmetric static gravitational field used.
Mots-clés : coordinate transformation, second-order equation for fermions
Keywords: Dirac Hamiltonian, effective potential, degenerate bound state.
@article{TMF_2019_198_3_a6,
     author = {M. V. Gorbatenko and V. P. Neznamov},
     title = {Quantum mechanical equivalence of the~metrics of a~centrally symmetric gravitational field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {489--522},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/}
}
TY  - JOUR
AU  - M. V. Gorbatenko
AU  - V. P. Neznamov
TI  - Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 489
EP  - 522
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/
LA  - ru
ID  - TMF_2019_198_3_a6
ER  - 
%0 Journal Article
%A M. V. Gorbatenko
%A V. P. Neznamov
%T Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 489-522
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/
%G ru
%F TMF_2019_198_3_a6
M. V. Gorbatenko; V. P. Neznamov. Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 489-522. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/

[1] K. Schwarzschild, “Über das Gravitationssfeldeines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Deutsch. Acad. Wissenschaft Berlin Kl. Math. Phys. Tech., 1916, 189–196, Königlich Preussische Akademie der Wissenschaften, Berlin | Zbl

[2] A. S. Eddington, The Mathematical Theory of Relativity, Cambridge Univ. Press, New York, 1924 | MR

[3] A. S. Eddington, “A comparison of Whitehead's and Einstein's formulae”, Nature, 113:2832 (1924), 192 | DOI

[4] D. Finkelstein, “Past-future asymmetry of the gravitational field of a point particle”, Phys. Rev., 110:4 (1958), 965–967 | DOI

[5] P. Painlevé, “La mécanique classique et la théorie de la relativité”, C. Roy. Acad. Sci. (Paris), 173 (1921), 677–680 | Zbl

[6] A. Gullstrand, “Allegemeine lösung des statischen einkörper-problems in der Einsteinshen gravitations theorie”, Arkiv. Mat. Astron. Fys., 16:8 (1922), 1–15

[7] G. Lemaitre, “L'univers en expansion”, Ann. Soc. Sci. Bruxelles Ser. A, 53:2 (1933 q), 51–85

[8] M. D. Kruskal, “Maximal extension of Schwarzschild metric”, Phys. Rev., 119:5 (1960), 1743–1745 | DOI

[9] G. Szekeres, “On the singularities of a Riemannian manifold”, Publ. Mat. Debrecen, 7 (1960), 285–301 | MR

[10] N. Deruelle, R. Ruffini, “Quantum and classical relativistic energy states in stationary geometries”, Phys. Lett. B, 52:4 (1974), 437–441 | DOI

[11] T. Damour, N. Deruelle, R. Ruffini, “On quantum resonances in stationary geometries”, Lett. Nuov. Cim., 15:2 (1976), 257–262 | DOI

[12] I. M. Ternov, V. R. Khalilov, G. A. Chizhov, A. B. Gaina, “Finitnoe dvizhenie massivnykh chastits v polyakh Kerra i Shvartsshilda”, Izv. vuzov. Fizika, 9, 109–114

[13] A. B. Gaina, G. A. Chizhov, “Radialnoe dvizhenie v pole Shvartsshilda”, Izv. vuzov. Fizika, 4 (1980), 120–121

[14] I. M. Ternov, A. B. Gaina, G. A. Chizhov, “Finitnoe dvizhenie elektronov v pole mikroskopicheski- malykh chernykh dyr”, Izv. vuzov. Ser. fiz., 8 (1980), 56–62 | DOI

[15] D. V. Galtsov, G. V. Pomerantseva, G. A. Chizhov, “Zapolnenie elektronami kvazisvyazannykh sostoyanii v pole Shvartsshilda”, Izv. vuzov. Ser. fiz., 26:8 (1983), 75–77 | DOI

[16] I. M. Ternov, A. B. Gaina, “Ob energeticheskom spektre uravneniya Diraka v polyakh Shvartsshilda i Kerra”, Izv. vuzov. Ser. fiz., 31:2 (1988), 86–92 | DOI | MR

[17] A. B. Gaina, O. B. Zaslavskii, “On quasilevels in the gravitational field of a black hole”, Class. Quantum Grav., 9:3 (1992), 667–676 | DOI | MR

[18] A. B. Gaina, N. I. Ionescu-Pallas, “The fine and hyperfine structure of fermionic levels in gravitational fields”, Rom. J. Phys., 38 (1993), 729–730

[19] A. Lasenby, C. Doran, J. Pritchard, A. Caceres, S. Dolan, “Bound states and decay times of fermions in a Schwarzschild black hole background”, Phys. Rev. D, 72:10 (2005), 105014, 14 pp., arXiv: gr-qc/0209090 | DOI

[20] V. P. Neznamov, I. I. Safronov, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya tochechnykh fermionov v gravitatsionnom pole Shvartsshilda”, ZhETF, 154:4(10) (2018), 761–773 | DOI | DOI

[21] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | Zbl | Zbl

[22] M. V. Gorbatenko, V. P. Neznamov, E. Yu. Popov, “Analysis of half-spin particle motion in Reissner–Nordström and Schwarzschild fields by the method of effective potentials”, Grav. Cosmol., 23:3 (2017), 245–250, arXiv: 1511.05058 | DOI | MR

[23] M. V. Gorbatenko, V. P. Neznamov, “Uniqueness and self-conjugacy of Dirac Hamiltonians in arbitrary gravitational fields”, Phys. Rev. D, 83:10 (2011), 105002, 12 pp., arXiv: 1102.4067 | DOI

[24] J. Schwinger, “Energy and momentum density in field theory”, Phys. Rev., 130:2 (1963), 800–805 | DOI

[25] M. V. Gorbatenko, V. P. Neznamov, “A modified method for deriving self-conjugate Dirac Hamiltonians in arbitrary gravitational fields and its application to centrally and axially symmetric gravitational fields”, J. Modern Phys., 6:3 (2015), 54289, 23 pp., arXiv: 1107.0844 | DOI

[26] C. M. Bender, D. Brody, H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89:27 (2002), 270401, 4 pp. ; “Extension of $\mathcal{PT}$-symmetric quantum mechanics to quantum field theory with cubic interaction”, Phys. Rev. D, 70:2 (2004), 025001, 19 pp. | DOI | MR | DOI

[27] A. Mostafazadeh, “Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI

[28] B. Bagchi, A. Fring, “Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems”, Phys. Lett. A, 373:47 (2009), 4307–4310 | DOI | MR

[29] L. Parker, “One-electron atom as a probe of spacetime curvature”, Phys. Rev. D, 22:8 (1980), 1922–1934 | DOI

[30] M. V. Gorbatenko, V. P. Neznamov, “Solution of the problem of uniqueness and Hermiticity of Hamiltonians for Dirac particles in gravitational fields”, Phys. Rev. D, 82:10 (2010), 104056, 11 pp., arXiv: 1007.4631 | DOI

[31] D. R. Brill, J. A. Wheeler, “Interaction of neutrinos and gravitational fields”, Rev. Modern Phys., 29:3 (1957), 465–479 | DOI | MR

[32] S. R. Dolan, Scattering, absorption and emission by black holes, PhD thesis, University of Cambridge, Cambridge, 2006

[33] V. P. Neznamov, “Uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Shvartsshilda, Raissnera–Nordstrema, Kerra i Kerra–Nyumena”, TMF, 197:3 (2018), 493–509 | DOI