Keywords: Dirac Hamiltonian, effective potential, degenerate bound state.
@article{TMF_2019_198_3_a6,
author = {M. V. Gorbatenko and V. P. Neznamov},
title = {Quantum mechanical equivalence of the~metrics of a~centrally symmetric gravitational field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {489--522},
year = {2019},
volume = {198},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/}
}
TY - JOUR AU - M. V. Gorbatenko AU - V. P. Neznamov TI - Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 489 EP - 522 VL - 198 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/ LA - ru ID - TMF_2019_198_3_a6 ER -
%0 Journal Article %A M. V. Gorbatenko %A V. P. Neznamov %T Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 489-522 %V 198 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/ %G ru %F TMF_2019_198_3_a6
M. V. Gorbatenko; V. P. Neznamov. Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 489-522. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a6/
[1] K. Schwarzschild, “Über das Gravitationssfeldeines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Deutsch. Acad. Wissenschaft Berlin Kl. Math. Phys. Tech., 1916, 189–196, Königlich Preussische Akademie der Wissenschaften, Berlin | Zbl
[2] A. S. Eddington, The Mathematical Theory of Relativity, Cambridge Univ. Press, New York, 1924 | MR
[3] A. S. Eddington, “A comparison of Whitehead's and Einstein's formulae”, Nature, 113:2832 (1924), 192 | DOI
[4] D. Finkelstein, “Past-future asymmetry of the gravitational field of a point particle”, Phys. Rev., 110:4 (1958), 965–967 | DOI
[5] P. Painlevé, “La mécanique classique et la théorie de la relativité”, C. Roy. Acad. Sci. (Paris), 173 (1921), 677–680 | Zbl
[6] A. Gullstrand, “Allegemeine lösung des statischen einkörper-problems in der Einsteinshen gravitations theorie”, Arkiv. Mat. Astron. Fys., 16:8 (1922), 1–15
[7] G. Lemaitre, “L'univers en expansion”, Ann. Soc. Sci. Bruxelles Ser. A, 53:2 (1933 q), 51–85
[8] M. D. Kruskal, “Maximal extension of Schwarzschild metric”, Phys. Rev., 119:5 (1960), 1743–1745 | DOI
[9] G. Szekeres, “On the singularities of a Riemannian manifold”, Publ. Mat. Debrecen, 7 (1960), 285–301 | MR
[10] N. Deruelle, R. Ruffini, “Quantum and classical relativistic energy states in stationary geometries”, Phys. Lett. B, 52:4 (1974), 437–441 | DOI
[11] T. Damour, N. Deruelle, R. Ruffini, “On quantum resonances in stationary geometries”, Lett. Nuov. Cim., 15:2 (1976), 257–262 | DOI
[12] I. M. Ternov, V. R. Khalilov, G. A. Chizhov, A. B. Gaina, “Finitnoe dvizhenie massivnykh chastits v polyakh Kerra i Shvartsshilda”, Izv. vuzov. Fizika, 9, 109–114
[13] A. B. Gaina, G. A. Chizhov, “Radialnoe dvizhenie v pole Shvartsshilda”, Izv. vuzov. Fizika, 4 (1980), 120–121
[14] I. M. Ternov, A. B. Gaina, G. A. Chizhov, “Finitnoe dvizhenie elektronov v pole mikroskopicheski- malykh chernykh dyr”, Izv. vuzov. Ser. fiz., 8 (1980), 56–62 | DOI
[15] D. V. Galtsov, G. V. Pomerantseva, G. A. Chizhov, “Zapolnenie elektronami kvazisvyazannykh sostoyanii v pole Shvartsshilda”, Izv. vuzov. Ser. fiz., 26:8 (1983), 75–77 | DOI
[16] I. M. Ternov, A. B. Gaina, “Ob energeticheskom spektre uravneniya Diraka v polyakh Shvartsshilda i Kerra”, Izv. vuzov. Ser. fiz., 31:2 (1988), 86–92 | DOI | MR
[17] A. B. Gaina, O. B. Zaslavskii, “On quasilevels in the gravitational field of a black hole”, Class. Quantum Grav., 9:3 (1992), 667–676 | DOI | MR
[18] A. B. Gaina, N. I. Ionescu-Pallas, “The fine and hyperfine structure of fermionic levels in gravitational fields”, Rom. J. Phys., 38 (1993), 729–730
[19] A. Lasenby, C. Doran, J. Pritchard, A. Caceres, S. Dolan, “Bound states and decay times of fermions in a Schwarzschild black hole background”, Phys. Rev. D, 72:10 (2005), 105014, 14 pp., arXiv: gr-qc/0209090 | DOI
[20] V. P. Neznamov, I. I. Safronov, “Statsionarnye resheniya uravneniya vtorogo poryadka dlya tochechnykh fermionov v gravitatsionnom pole Shvartsshilda”, ZhETF, 154:4(10) (2018), 761–773 | DOI | DOI
[21] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | Zbl | Zbl
[22] M. V. Gorbatenko, V. P. Neznamov, E. Yu. Popov, “Analysis of half-spin particle motion in Reissner–Nordström and Schwarzschild fields by the method of effective potentials”, Grav. Cosmol., 23:3 (2017), 245–250, arXiv: 1511.05058 | DOI | MR
[23] M. V. Gorbatenko, V. P. Neznamov, “Uniqueness and self-conjugacy of Dirac Hamiltonians in arbitrary gravitational fields”, Phys. Rev. D, 83:10 (2011), 105002, 12 pp., arXiv: 1102.4067 | DOI
[24] J. Schwinger, “Energy and momentum density in field theory”, Phys. Rev., 130:2 (1963), 800–805 | DOI
[25] M. V. Gorbatenko, V. P. Neznamov, “A modified method for deriving self-conjugate Dirac Hamiltonians in arbitrary gravitational fields and its application to centrally and axially symmetric gravitational fields”, J. Modern Phys., 6:3 (2015), 54289, 23 pp., arXiv: 1107.0844 | DOI
[26] C. M. Bender, D. Brody, H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89:27 (2002), 270401, 4 pp. ; “Extension of $\mathcal{PT}$-symmetric quantum mechanics to quantum field theory with cubic interaction”, Phys. Rev. D, 70:2 (2004), 025001, 19 pp. | DOI | MR | DOI
[27] A. Mostafazadeh, “Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI
[28] B. Bagchi, A. Fring, “Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems”, Phys. Lett. A, 373:47 (2009), 4307–4310 | DOI | MR
[29] L. Parker, “One-electron atom as a probe of spacetime curvature”, Phys. Rev. D, 22:8 (1980), 1922–1934 | DOI
[30] M. V. Gorbatenko, V. P. Neznamov, “Solution of the problem of uniqueness and Hermiticity of Hamiltonians for Dirac particles in gravitational fields”, Phys. Rev. D, 82:10 (2010), 104056, 11 pp., arXiv: 1007.4631 | DOI
[31] D. R. Brill, J. A. Wheeler, “Interaction of neutrinos and gravitational fields”, Rev. Modern Phys., 29:3 (1957), 465–479 | DOI | MR
[32] S. R. Dolan, Scattering, absorption and emission by black holes, PhD thesis, University of Cambridge, Cambridge, 2006
[33] V. P. Neznamov, “Uravneniya vtorogo poryadka dlya fermionov v prostranstve-vremeni Shvartsshilda, Raissnera–Nordstrema, Kerra i Kerra–Nyumena”, TMF, 197:3 (2018), 493–509 | DOI