Mots-clés : invariant
@article{TMF_2019_198_3_a4,
author = {Sh. M. Nagiyev and A. I. Akhmedov},
title = {Time evolution of quadratic quantum systems: {Evolution} operators, propagators, and invariants},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {451--472},
year = {2019},
volume = {198},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/}
}
TY - JOUR AU - Sh. M. Nagiyev AU - A. I. Akhmedov TI - Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 451 EP - 472 VL - 198 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/ LA - ru ID - TMF_2019_198_3_a4 ER -
%0 Journal Article %A Sh. M. Nagiyev %A A. I. Akhmedov %T Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 451-472 %V 198 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/ %G ru %F TMF_2019_198_3_a4
Sh. M. Nagiyev; A. I. Akhmedov. Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 451-472. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/
[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | Zbl | Zbl
[2] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl
[3] K. Husimi, “Miscellanea in elementary quantum mechanics, II”, Prog. Theor. Phys., 9:4 (1953), 381–402 | DOI | MR
[4] H. R. Lewis, W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys., 10:8 (1969), 1458–1473 | DOI | MR
[5] P. Camiz, A. Gerardi, C. Marchioro, E. Presutti, E. Scacciatelli, “Exact solution of a time-dependent quantum harmonic oscillator with a singular perturbation”, J. Math. Phys., 12:10 (1971), 2040–2043 | DOI | MR
[6] K. B. Wolf, “On time-dependent quadratic quantum Hamiltonians”, SIAM J. Appl. Math., 40:3 (1981), 419–431 | DOI | MR
[7] N. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR
[8] V. V. Dodonov, V. I. Manko, O. V. Shakhmistova, “Wigner functions of particle in a time-dependent uniform field”, Phys. Lett. A, 102:7 (1984), 295–297 | DOI | MR
[9] R. Kordero-Soto, S. K. Suslov, “Obraschenie vremeni dlya modifitsirovannykh ostsillyatorov”, TMF, 162:3 (2010), 345–380 | DOI | DOI | MR | Zbl
[10] R. Cordero-Soto, E. Suazo, S. K. Suslov, “Quantum integrals of motion for variable quadratic Hamiltonians”, Ann. Phys., 325:9 (2010), 1884–1912, arXiv: 0912.4900 | DOI | MR
[11] D.-Y. Song, “Unitary relations in time-dependent harmonic oscillators”, J. Phys. A: Math. Gen., 32:18 (1999), 3449–3456, arXiv: quant-ph/9812038 | DOI | MR
[12] S. P. Kim, “A class of exactly solved time-dependent quantum oscillators”, J. Phys. A: Math. Gen., 27:11 (1994), 3927–3936 | DOI | MR
[13] J-Y. Ji, J. K. Kim, S. P. Kim, “Heisenberg-picture approach to the exact quantum motion of a time-dependent harmonic oscillator”, Phys. Rev. A, 51:5 (1995), 4268–4271 | DOI
[14] I. A. Pedrosa, “Exact wave functions of a harmonic oscillator with time-dependent mass and frequency”, Phys. Rev. A, 55:4 (1997), 3219–3221 | DOI
[15] M. V. Berry, N. L. Balazs, “Nonspreading wave packets”, Am. J. Phys., 47:3 (1979), 264–267 | DOI
[16] I. Guedes, “Solution of the Schrödinger equation for the time-dependent linear potential”, Phys. Rev. A, 63:3 (2001), 034102, 3 pp. | DOI
[17] M. Feng, “Complete solution of the Schrödinger equation for the time-dependent linear potential”, Phys. Rev. A, 64:3 (2002), 034101, 3 pp., arXiv: quant-ph/0105145 | DOI
[18] Sh. M. Nagiyev, K. Sh. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field”, Phys. Lett. A, 377:10–11 (2013), 747–752 | DOI | MR
[19] Sh. M. Nagiyev, “Reexamination of a time-dependent harmonic oscillator”, Azerb. J. Phys. Fizika, XXII:4 (2016), 16–23
[20] Sh. M. Nagiev, “Funktsiya Vignera dlya relyativistskoi chastitsy v zavisyaschem ot vremeni lineinom potentsiale”, TMF, 188:1 (2016), 76–84 | DOI | DOI | MR
[21] A. M. Perelomov, V. S. Popov, “Metod proizvodyaschikh funktsii dlya kvantovogo ostsillyatora”, TMF, 3:3 (1970), 377–391 | DOI
[22] F. J. Dyson, “The $S$ matrix in quantum electrodynamics”, Phys. Rev., 75:11 (1949), 1736–1755 | DOI | MR
[23] Sh. M. Nagiev, “O primenenii metoda operatora evolyutsii k opisaniyu chastitsy v peremennom odnorodnom pole”, TMF, 194:2 (2018), 364–380 | DOI | DOI
[24] K. V. Zhukovskii, “Reshenie differentsialnykh uravnenii evolyutsionnogo tipa i fizicheskikh zadach s ispolzovaniem operatornogo metoda”, TMF, 190:1 (2017), 58–77 | DOI | DOI | MR
[25] K. V. Zhukovsky, G. Dattoli, “Evolution of non-spreading Airy wavepackets in time dependent linear potentials”, Appl. Math. Comput., 217:20 (2017), 7966–7974 | DOI | MR
[26] Sh. M. Nagiev, “Dvizhenie v peremennom kvaziodnorodnom pole i operatornye tozhdestva”, Azerb. J. Phys. Fizika, XIX:2 (2013), 129–135
[27] A. L. Rivera, N. M. Atakhishiyev, S. M. Chumakov, K. B. Wolf, “Evolution under polynomial Hamiltonians in quantum and optical phase spaces”, Phys. Rev. A, 55:2 (1997), 876–889 | DOI | MR
[28] H. Dekker, “Classical and quantum mechanics of the damped harmonic oscillator”, Phys. Rep., 80:1 (1981), 1–110 | DOI | MR
[29] V. S. Popov, “Feinmanovskii metod rasputyvaniya nekommutiruyuschikh operatorov v kvantovoi mekhanike”, ZhETF, 128:5(11) (2005), 944–957
[30] V. V. Dodonov, V. I. Manko, “Invarianty i korrelirovannye sostoyaniya nestatsionarnykh kvantovykh sistem”, Tr. FIAN, 183, 1987, 71–181