Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 451-472
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the evolution operator method to describe time-dependent quadratic quantum systems in the framework of nonrelativistic quantum mechanics. For simplicity, we consider a free particle with a variable mass $M(t)$, a particle with a variable mass $M(t)$ in an alternating homogeneous field, and a harmonic oscillator with a variable mass $M(t)$ and frequency $\omega(t)$ subject to a variable force $F(t)$. To construct the evolution operators for these systems in an explicit disentangled form, we use a simple technique to find the general solution of a certain class of differential and finite-difference nonstationary Schrödinger-type equations of motion and also the operator identities of the Baker–Campbell–Hausdorff type. With known evolution operators, we can easily find the most general form of the propagators, invariants of any order, and wave functions and establish a unitary relation between systems. Results known in the literature follow from the obtained general results as particular cases.
Keywords: nonstationary quadratic system, evolution operator, propagator, unitary relation.
Mots-clés : invariant
@article{TMF_2019_198_3_a4,
     author = {Sh. M. Nagiyev and A. I. Akhmedov},
     title = {Time evolution of quadratic quantum systems: {Evolution} operators, propagators, and invariants},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {451--472},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
AU  - A. I. Akhmedov
TI  - Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 451
EP  - 472
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/
LA  - ru
ID  - TMF_2019_198_3_a4
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%A A. I. Akhmedov
%T Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 451-472
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/
%G ru
%F TMF_2019_198_3_a4
Sh. M. Nagiyev; A. I. Akhmedov. Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 451-472. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a4/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | Zbl | Zbl

[2] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl

[3] K. Husimi, “Miscellanea in elementary quantum mechanics, II”, Prog. Theor. Phys., 9:4 (1953), 381–402 | DOI | MR

[4] H. R. Lewis, W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys., 10:8 (1969), 1458–1473 | DOI | MR

[5] P. Camiz, A. Gerardi, C. Marchioro, E. Presutti, E. Scacciatelli, “Exact solution of a time-dependent quantum harmonic oscillator with a singular perturbation”, J. Math. Phys., 12:10 (1971), 2040–2043 | DOI | MR

[6] K. B. Wolf, “On time-dependent quadratic quantum Hamiltonians”, SIAM J. Appl. Math., 40:3 (1981), 419–431 | DOI | MR

[7] N. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[8] V. V. Dodonov, V. I. Manko, O. V. Shakhmistova, “Wigner functions of particle in a time-dependent uniform field”, Phys. Lett. A, 102:7 (1984), 295–297 | DOI | MR

[9] R. Kordero-Soto, S. K. Suslov, “Obraschenie vremeni dlya modifitsirovannykh ostsillyatorov”, TMF, 162:3 (2010), 345–380 | DOI | DOI | MR | Zbl

[10] R. Cordero-Soto, E. Suazo, S. K. Suslov, “Quantum integrals of motion for variable quadratic Hamiltonians”, Ann. Phys., 325:9 (2010), 1884–1912, arXiv: 0912.4900 | DOI | MR

[11] D.-Y. Song, “Unitary relations in time-dependent harmonic oscillators”, J. Phys. A: Math. Gen., 32:18 (1999), 3449–3456, arXiv: quant-ph/9812038 | DOI | MR

[12] S. P. Kim, “A class of exactly solved time-dependent quantum oscillators”, J. Phys. A: Math. Gen., 27:11 (1994), 3927–3936 | DOI | MR

[13] J-Y. Ji, J. K. Kim, S. P. Kim, “Heisenberg-picture approach to the exact quantum motion of a time-dependent harmonic oscillator”, Phys. Rev. A, 51:5 (1995), 4268–4271 | DOI

[14] I. A. Pedrosa, “Exact wave functions of a harmonic oscillator with time-dependent mass and frequency”, Phys. Rev. A, 55:4 (1997), 3219–3221 | DOI

[15] M. V. Berry, N. L. Balazs, “Nonspreading wave packets”, Am. J. Phys., 47:3 (1979), 264–267 | DOI

[16] I. Guedes, “Solution of the Schrödinger equation for the time-dependent linear potential”, Phys. Rev. A, 63:3 (2001), 034102, 3 pp. | DOI

[17] M. Feng, “Complete solution of the Schrödinger equation for the time-dependent linear potential”, Phys. Rev. A, 64:3 (2002), 034101, 3 pp., arXiv: quant-ph/0105145 | DOI

[18] Sh. M. Nagiyev, K. Sh. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field”, Phys. Lett. A, 377:10–11 (2013), 747–752 | DOI | MR

[19] Sh. M. Nagiyev, “Reexamination of a time-dependent harmonic oscillator”, Azerb. J. Phys. Fizika, XXII:4 (2016), 16–23

[20] Sh. M. Nagiev, “Funktsiya Vignera dlya relyativistskoi chastitsy v zavisyaschem ot vremeni lineinom potentsiale”, TMF, 188:1 (2016), 76–84 | DOI | DOI | MR

[21] A. M. Perelomov, V. S. Popov, “Metod proizvodyaschikh funktsii dlya kvantovogo ostsillyatora”, TMF, 3:3 (1970), 377–391 | DOI

[22] F. J. Dyson, “The $S$ matrix in quantum electrodynamics”, Phys. Rev., 75:11 (1949), 1736–1755 | DOI | MR

[23] Sh. M. Nagiev, “O primenenii metoda operatora evolyutsii k opisaniyu chastitsy v peremennom odnorodnom pole”, TMF, 194:2 (2018), 364–380 | DOI | DOI

[24] K. V. Zhukovskii, “Reshenie differentsialnykh uravnenii evolyutsionnogo tipa i fizicheskikh zadach s ispolzovaniem operatornogo metoda”, TMF, 190:1 (2017), 58–77 | DOI | DOI | MR

[25] K. V. Zhukovsky, G. Dattoli, “Evolution of non-spreading Airy wavepackets in time dependent linear potentials”, Appl. Math. Comput., 217:20 (2017), 7966–7974 | DOI | MR

[26] Sh. M. Nagiev, “Dvizhenie v peremennom kvaziodnorodnom pole i operatornye tozhdestva”, Azerb. J. Phys. Fizika, XIX:2 (2013), 129–135

[27] A. L. Rivera, N. M. Atakhishiyev, S. M. Chumakov, K. B. Wolf, “Evolution under polynomial Hamiltonians in quantum and optical phase spaces”, Phys. Rev. A, 55:2 (1997), 876–889 | DOI | MR

[28] H. Dekker, “Classical and quantum mechanics of the damped harmonic oscillator”, Phys. Rep., 80:1 (1981), 1–110 | DOI | MR

[29] V. S. Popov, “Feinmanovskii metod rasputyvaniya nekommutiruyuschikh operatorov v kvantovoi mekhanike”, ZhETF, 128:5(11) (2005), 944–957

[30] V. V. Dodonov, V. I. Manko, “Invarianty i korrelirovannye sostoyaniya nestatsionarnykh kvantovykh sistem”, Tr. FIAN, 183, 1987, 71–181