Charge transfer on a two-dimensional lattice with Tamm states
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 433-450
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quantum dynamics of charge propagation over a two-dimensional lattice with impurity sites at the lattice edges. These sites simulate boundary $($Tamm$)$ states. We solve the nonstationary problem of the evolution of a quantum excitation over impurity sites at the lattice perimeter in the tight-binding approximation. We obtain the solution as an expansion in eigenfunctions of the unperturbed system Hamiltonian. We obtain analytically accurate results for the propagation of the wave function over impurity sites.
Keywords: Tamm state, charge transfer, quantum dynamics.
@article{TMF_2019_198_3_a3,
     author = {V. N. Likhachev and G. A. Vinogradov},
     title = {Charge transfer on a~two-dimensional lattice with {Tamm} states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--450},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a3/}
}
TY  - JOUR
AU  - V. N. Likhachev
AU  - G. A. Vinogradov
TI  - Charge transfer on a two-dimensional lattice with Tamm states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 433
EP  - 450
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a3/
LA  - ru
ID  - TMF_2019_198_3_a3
ER  - 
%0 Journal Article
%A V. N. Likhachev
%A G. A. Vinogradov
%T Charge transfer on a two-dimensional lattice with Tamm states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 433-450
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a3/
%G ru
%F TMF_2019_198_3_a3
V. N. Likhachev; G. A. Vinogradov. Charge transfer on a two-dimensional lattice with Tamm states. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 433-450. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a3/

[1] I. E. Tamm, “O vozmozhnoi svyazi elektronov na poverkhnostyakh kristalla”, ZhETF, 3:1 (1933), 34–43 | Zbl

[2] C. Devison, Dzh. Levi, Poverkhnostnye (tammovskie) sostoyaniya, Mir, M., 1973

[3] I. M. Lifshits, S. I. Pekar, “Tammovskie svyazannye sostoyaniya elektronov na poverkhnosti kristalla i poverkhnostnye kolebaniya atomov reshetki”, UFN, 56 (1955), 531–568 | DOI

[4] T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures”, Phys. Rev. Lett., 101:11 (2008), 113902, 3 pp. | DOI

[5] T. Goto, A. V. Baryshev, M. Inoue, A. V. Dorofeenko, A. M. Merzlikin, A. P. Vinogradov, A. A. Lisyansky, A. B. Granovsky, “Tailoring surfaces of one-dimensional magnetophotonic crystals: optical Tamm state and Faraday rotation”, Phys. Rev. B, 79:12 (2009), 125103, 5 pp. | DOI

[6] I. V. Treshin, V. V. Klimov, P. N. Melentiev, V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture”, Phys. Rev. A, 88:2 (2013), 023832, 6 pp. | DOI

[7] C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, Yu. S. Kivshar, “Observation of surface gap solitons in semi-infinite waveguide arrays”, Phys. Rev. Lett., 97:8 (2006), 083901, 4 pp. | DOI

[8] E. Smirnov, M. Stepić, C. E. Rüter, D. Kip, V. Shandarov, “Observation of staggered surface solitary waves in one-dimensional waveguide arrays”, Optics Lett., 31:15 (2006), 2338–2340 | DOI

[9] M. Koch, F. Ample, Ch. Joachim, L. Grill, “Voltage-dependent conductance of a single graphene nanoribbon”, Nature Nanotechnology, 7:11 (2012), 713–717 | DOI

[10] H. K. Sy, T. C. Chua, “Internal Tamm states in finite and infinite superlattices”, Phys. Rev. B, 48:11 (1993), 7930–7934 | DOI

[11] A. V. Savin, Yu. S. Kivshar, “Vibrational Tamm states at the edges of graphene nanoribbons”, Phys. Rev. B, 81:16 (2010), 165418, 9 pp. | DOI

[12] I. V. Stankevich, L. A. Chernozatonskii, “Tammovskie sostoyaniya uglerodnykh nanotrub”, Pisma v ZhETF, 63:8 (1996), 588–593 | DOI

[13] K. Kobayashi, “Calculation of ballistic conductance through Tamm surface states”, Phys. Rev. B, 65:3 (2002), 035419, 11 pp. | DOI