Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a broad class of short-range pairwise attraction potentials, we study threshold phenomena in the spectrum of the two-particle Schrödinger operator associated with the energy operator of the s–d exchange model. We prove that the bound state (eigenvalue) either exists or does not exist depending on the exchange interaction parameter, the system quasimomentum, and dimension of the lattice.
Keywords: discrete Schrödinger operator, two-particle system, energy operator, virtual level, eigenvalue, lattice.
Mots-clés : dispersion relation
@article{TMF_2019_198_3_a2,
     author = {S. N. Lakaev and A. T. Boltaev},
     title = {Threshold phenomena in the~spectrum of the~two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--432},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - A. T. Boltaev
TI  - Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 418
EP  - 432
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/
LA  - ru
ID  - TMF_2019_198_3_a2
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A A. T. Boltaev
%T Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 418-432
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/
%G ru
%F TMF_2019_198_3_a2
S. N. Lakaev; A. T. Boltaev. Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/

[1] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971

[2] A. I. Mogil'ner, “Hamiltonians in solid state physics as multiparticle discrete Schroedinger operators: problems and results”, Many-Particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, eds. R. A. Minlos, AMS, Providence, RI, 1991, 139–194 | MR

[3] E. L. Nagaev, Fizika magnitnykh poluprovodnikov, Nauka, M., 1979

[4] A. K. Motovilov, W. Sandhas, V. B. Belyaev, “Perturbation of a lattice spectral band by a nearby resonance”, J. Math. Phys., 42:6 (2001), 2490–2506, arXiv: cond-mat/9909414 | DOI | MR

[5] S. N. Lakaev, Sh. M. Latipov, “O suschestvovanii i analitichnosti sobstvennykh znachenii dvukhkanalnoi molekulyarno-rezonansnoi modeli”, TMF, 169:3 (2011), 341–351 | DOI | DOI | MR

[6] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR

[7] M. Klaus, “On the bound state of Schrödinger operators in one dimension”, Ann. Phys., 108:2 (1977), 288–300 | DOI | MR

[8] Zh. I. Abdullaev, S. N. Lakaev, “Konechnost diskretnogo spektra trekhchastichnogo operatora Shredingera na reshetke”, TMF, 111:1 (1997), 94–108 | DOI | DOI | MR | Zbl

[9] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices”, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR

[10] B. Simon, “The bound states of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR

[11] S. N. Lakaev, I. N. Bozorov, “Chislo svyazannykh sostoyanii odnochastichnogo gamiltoniana na trekhmernoi reshetke”, TMF, 158:3 (2009), 425–443 | DOI | DOI | MR | Zbl

[12] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR

[13] S. N. Lakaev, “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl

[14] S. N. Lakaev, Sh. U. Alladustov, “Polozhitelnost sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, TMF, 178:3 (2014), 390–402 | DOI | DOI | MR | Zbl

[15] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR

[16] Yu. N. Ovchinnikov, I. M. Sigal, “Number of bound states of three-body systems and Efimov's effect”, Ann. Phys., 123:2 (1989), 274–295 | DOI | MR

[17] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[18] H. Tamura, “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and Scattering Theory and Applications, Advanced Studies in Pure Mathematics, 23, ed. K. Yajima, Math. Soc. Japan, Tokyo, 1994, 311–322 | DOI | MR

[19] S. Albeverio, S. N. Lakaev, A. M. Khalkhujaev, “Number of eigenvalues of the three-particle Schrödinger operators on lattices”, Markov Proc. Relat. Fields, 18:3 (2012), 387–420 | MR

[20] V. Bach, W. de Siqueira Pedra, S. N. Lakaev, “Bounds on the discrete spectrum of lattice Schrödinger operators”, J. Math. Phys., 59:2 (2017), 022109, 25 pp., arXiv: 1709.02966 | DOI | MR

[21] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl