Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432

Voir la notice de l'article provenant de la source Math-Net.Ru

For a broad class of short-range pairwise attraction potentials, we study threshold phenomena in the spectrum of the two-particle Schrödinger operator associated with the energy operator of the s–d exchange model. We prove that the bound state (eigenvalue) either exists or does not exist depending on the exchange interaction parameter, the system quasimomentum, and dimension of the lattice.
Keywords: discrete Schrödinger operator, two-particle system, energy operator, virtual level, eigenvalue, lattice.
Mots-clés : dispersion relation
@article{TMF_2019_198_3_a2,
     author = {S. N. Lakaev and A. T. Boltaev},
     title = {Threshold phenomena in the~spectrum of the~two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--432},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - A. T. Boltaev
TI  - Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 418
EP  - 432
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/
LA  - ru
ID  - TMF_2019_198_3_a2
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A A. T. Boltaev
%T Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 418-432
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/
%G ru
%F TMF_2019_198_3_a2
S. N. Lakaev; A. T. Boltaev. Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/