Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432
Voir la notice de l'article provenant de la source Math-Net.Ru
For a broad class of short-range pairwise attraction potentials, we study threshold phenomena in the spectrum of the two-particle Schrödinger operator associated with the energy operator of the s–d exchange model. We prove that the bound state (eigenvalue) either exists or does not exist depending on the exchange interaction parameter, the system quasimomentum, and dimension of the lattice.
Keywords:
discrete Schrödinger operator, two-particle system, energy operator, virtual level, eigenvalue, lattice.
Mots-clés : dispersion relation
Mots-clés : dispersion relation
@article{TMF_2019_198_3_a2,
author = {S. N. Lakaev and A. T. Boltaev},
title = {Threshold phenomena in the~spectrum of the~two-particle {Schr\"odinger} operator on a~lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {418--432},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/}
}
TY - JOUR AU - S. N. Lakaev AU - A. T. Boltaev TI - Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 418 EP - 432 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/ LA - ru ID - TMF_2019_198_3_a2 ER -
%0 Journal Article %A S. N. Lakaev %A A. T. Boltaev %T Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 418-432 %V 198 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/ %G ru %F TMF_2019_198_3_a2
S. N. Lakaev; A. T. Boltaev. Threshold phenomena in the~spectrum of the~two-particle Schr\"odinger operator on a~lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/