Mots-clés : dispersion relation
@article{TMF_2019_198_3_a2,
author = {S. N. Lakaev and A. T. Boltaev},
title = {Threshold phenomena in the~spectrum of the~two-particle {Schr\"odinger} operator on a~lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {418--432},
year = {2019},
volume = {198},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/}
}
TY - JOUR AU - S. N. Lakaev AU - A. T. Boltaev TI - Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 418 EP - 432 VL - 198 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/ LA - ru ID - TMF_2019_198_3_a2 ER -
S. N. Lakaev; A. T. Boltaev. Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 418-432. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a2/
[1] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971
[2] A. I. Mogil'ner, “Hamiltonians in solid state physics as multiparticle discrete Schroedinger operators: problems and results”, Many-Particle Hamiltonians: Spectra and Scattering, Advances in Soviet Mathematics, 5, eds. R. A. Minlos, AMS, Providence, RI, 1991, 139–194 | MR
[3] E. L. Nagaev, Fizika magnitnykh poluprovodnikov, Nauka, M., 1979
[4] A. K. Motovilov, W. Sandhas, V. B. Belyaev, “Perturbation of a lattice spectral band by a nearby resonance”, J. Math. Phys., 42:6 (2001), 2490–2506, arXiv: cond-mat/9909414 | DOI | MR
[5] S. N. Lakaev, Sh. M. Latipov, “O suschestvovanii i analitichnosti sobstvennykh znachenii dvukhkanalnoi molekulyarno-rezonansnoi modeli”, TMF, 169:3 (2011), 341–351 | DOI | DOI | MR
[6] M. Klaus, B. Simon, “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130:2 (1980), 251–281 | DOI | MR
[7] M. Klaus, “On the bound state of Schrödinger operators in one dimension”, Ann. Phys., 108:2 (1977), 288–300 | DOI | MR
[8] Zh. I. Abdullaev, S. N. Lakaev, “Konechnost diskretnogo spektra trekhchastichnogo operatora Shredingera na reshetke”, TMF, 111:1 (1997), 94–108 | DOI | DOI | MR | Zbl
[9] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, “The threshold effects for the two-particle Hamiltonians on lattices”, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR
[10] B. Simon, “The bound states of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Phys., 97:2 (1976), 279–288 | DOI | MR
[11] S. N. Lakaev, I. N. Bozorov, “Chislo svyazannykh sostoyanii odnochastichnogo gamiltoniana na trekhmernoi reshetke”, TMF, 158:3 (2009), 425–443 | DOI | DOI | MR | Zbl
[12] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR
[13] S. N. Lakaev, “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | DOI | MR | Zbl
[14] S. N. Lakaev, Sh. U. Alladustov, “Polozhitelnost sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, TMF, 178:3 (2014), 390–402 | DOI | DOI | MR | Zbl
[15] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR
[16] Yu. N. Ovchinnikov, I. M. Sigal, “Number of bound states of three-body systems and Efimov's effect”, Ann. Phys., 123:2 (1989), 274–295 | DOI | MR
[17] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl
[18] H. Tamura, “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and Scattering Theory and Applications, Advanced Studies in Pure Mathematics, 23, ed. K. Yajima, Math. Soc. Japan, Tokyo, 1994, 311–322 | DOI | MR
[19] S. Albeverio, S. N. Lakaev, A. M. Khalkhujaev, “Number of eigenvalues of the three-particle Schrödinger operators on lattices”, Markov Proc. Relat. Fields, 18:3 (2012), 387–420 | MR
[20] V. Bach, W. de Siqueira Pedra, S. N. Lakaev, “Bounds on the discrete spectrum of lattice Schrödinger operators”, J. Math. Phys., 59:2 (2017), 022109, 25 pp., arXiv: 1709.02966 | DOI | MR
[21] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | Zbl