Mots-clés : Picard–Fuchs equation, instanton correction
@article{TMF_2019_198_3_a0,
author = {Jialiang Dai and Engui Fan},
title = {Whitham hierarchy and generalized {Picard{\textendash}Fuchs} operators in the~$\mathcal N=2$ {SUSY} {Yang{\textendash}Mills} theory for classical gauge groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {365--380},
year = {2019},
volume = {198},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/}
}
TY - JOUR AU - Jialiang Dai AU - Engui Fan TI - Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 365 EP - 380 VL - 198 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/ LA - ru ID - TMF_2019_198_3_a0 ER -
%0 Journal Article %A Jialiang Dai %A Engui Fan %T Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 365-380 %V 198 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/ %G ru %F TMF_2019_198_3_a0
Jialiang Dai; Engui Fan. Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 365-380. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/
[1] N. Seiberg, E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR
[2] K. Ito, N. Sasakura, “Exact and microscopic one-instanton calculations in $\mathcal N=2$ supersymmetric Yang–Mills theories”, Nucl. Phys. B, 484:1–22 (1997), 141–166, arXiv: hep-th/9608054 | DOI | MR
[3] E. D'Hoker, I. M. Krichever, D. H. Phong, “The effective prepotential of $N=2$ supersymmetric SU$(N_c)$ gauge theories”, Nucl. Phys. B, 489:1–2 (1997), 179–210, arXiv: hep-th/9609041 | DOI | MR
[4] E. D'Hoker, I. M. Krichever, D. H. Phong, “The effective prepotential of $N=2$ supersymmetric SO$(N_c)$ and Sp$(N_c)$ gauge theories”, Nucl. Phys. B, 489:1–2 (1997), 211–222, arXiv: hep-th/9609145 | DOI
[5] A. Klemm, W. Lerche, S. Theisen, “Nonperturbative effective actions of $N=2$-supersymmetric gauge theories”, Internat. J. Modern Phys. A, 11:11 (1996), 1929–1973, arXiv: hep-th/9505150 | DOI | MR
[6] J. M. Isidro, A. Mukherjee, J. P. Nunes, H. J. Schnitzer, “On the Picard–Fuchs equations for massive $N=2$ Seiberg–Witten theories”, Nucl. Phys. B, 502:1–2 (1997), 363–382, arXiv: hep-th/9704174 | DOI | MR
[7] J. M. Isidro, A. Mukherjee, J. P. Nunes, H. J. Schnitzer, “A new derivation of the Picard–Fuchs equations for effective $N=2$ super Yang–Mills theories”, Nucl. Phys. B, 492:3 (1997), 647–681, arXiv: hep-th/9609116 | DOI | MR
[8] M. Alishahiha, “On the Picard–Fuchs equations of the SW models”, Phys. Lett. B, 398:1–2 (1997), 100–103, arXiv: hep-th/9609157 | DOI | MR
[9] J. M. Isidro, “Integrability, Seiberg–Witten models and Picard–Fuchs equations”, JHEP, 01 (2001), 043, 11 pp., arXiv: hep-th/0011253 | DOI | MR
[10] K. Ito, S.-K. Yang, “Picard–Fuchs equations and prepotentials in $N=2$ supersymmetric QCD”, Frontiers in Quantum Field Theory (Osaka, Japan, December 14–17, 1995), eds. H. Itoyama, M. Kaku, H. Kunitomo, M. Nimomiya, H. Shirohura, World Sci., Singapore, 1996, 331–342, arXiv: hep-th/9603073 | MR
[11] K. Ito, “Picard–Fuchs equations and prepotential in $N=2$ supersymmetric $G_2$ Yang–Mills theory”, Phys. Lett. B, 406:1–2 (1997), 54–59, arXiv: hep-th/9703180 | DOI | MR
[12] T. Nakatsu, K. Takasaki, “Whitham–Toda hierarchy and $\mathcal N=2$ supersymmetric Yang–Mills theory”, Modern Phys. Lett. A, 11:2 (1996), 157–168, arXiv: hep-th/9509162 | DOI | MR
[13] E. D'Hoker, D. H. Phong, “Seiberg–Witten theory and integrable systems”, Integrability: the Seiberg–Witten and Whitham Equations (Edinburgh, 14–18 September, 1998), eds. H. W. Braden, I. M. Krichever, Gordon and Breach, Amsterdam, 2000, 43–68, arXiv: hep-th/9903068 | MR
[14] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Sci., Singapore, 1999 | DOI | MR
[15] K. Takasaki, “Whitham deformations of Seiberg–Witten curves for classical gauge groups”, Internat. J. Modern Phys. A, 15:23 (2000), 3635–3666, arXiv: hep-th/9901120 | DOI | MR
[16] K. Takasaki, “Whitham deformations and tau function in $N=2$ supersymmetric gauge theories”, Prog. Theor. Phys. Suppl., 135 (1999), 53–74, arXiv: hep-th/9905224 | DOI | MR
[17] L. Chekhov, A. Mironov, “Matrix models vs. Seiberg–Witten/Whitham theories”, Phys. Lett. B, 552:3–4 (2003), 293–302 | DOI | MR
[18] A. Marshakov, N. Nekrasov, “Extended Seiberg–Witten theory and integrable hierarchy”, JHEP, 01 (2007), 104, 39 pp., arXiv: :hep-th/0612019 | DOI | MR
[19] A. Gorsky, A. Milekhin, “RG-Whitham dynamics and complex Hamiltonian systems”, Nucl. Phys. B, 895 (2015), 33–63, arXiv: 1408.0425 | DOI | MR
[20] A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, “RG equations from Whitham hierarchy”, Nucl. Phys. B, 527:3 (1998), 690–716, arXiv: hep-th/9802007 | DOI | MR
[21] Y. Ohta, “Picard–Fuchs equation and Whitham hierarchy in $N=2$ supersymmetric SU$(r+1)$ Yang–Mills theories”, J. Math. Phys., 40:12 (1999), 6292–6301, arXiv: hep-th/9906207 | DOI | MR
[22] H. Itoyama, A. Morozov, “Integrability and Seiberg–Witten theory: curves and periods”, Nucl. Phys. B, 477:3 (1996), 855–877, arXiv: hep-th/9511126 | DOI | MR
[23] J. D. Edelstein, J. Mas, “$N=2$ supersymmetric Yang–Mills theories and Whitham integrable hierarchies”, AIP Conf. Proc., 484:1 (2008), 195–212, arXiv: hep-th/9902161 | DOI | MR