Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 365-380
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive infinitely many meromorphic differentials based on the fractional powers of the superpotential arising from hyperelliptic curves. We obtain various differential equations expressed in terms of the moduli derivatives of the Seiberg–Witten differential. Taking advantage of the cross derivatives of these differentials, we can derive some Picard–Fuchs equations and use the Euler operator to obtain a complete set of Picard–Fuchs equations containing the instanton correction term. We solve the complete system of equations by expanding the moduli parameters in power series.
Keywords: Whitham hierarchy, renormalization group parameter.
Mots-clés : Picard–Fuchs equation, instanton correction
@article{TMF_2019_198_3_a0,
     author = {Jialiang Dai and Engui Fan},
     title = {Whitham hierarchy and generalized {Picard{\textendash}Fuchs} operators in the~$\mathcal N=2$ {SUSY} {Yang{\textendash}Mills} theory for classical gauge groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {365--380},
     year = {2019},
     volume = {198},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/}
}
TY  - JOUR
AU  - Jialiang Dai
AU  - Engui Fan
TI  - Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 365
EP  - 380
VL  - 198
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/
LA  - ru
ID  - TMF_2019_198_3_a0
ER  - 
%0 Journal Article
%A Jialiang Dai
%A Engui Fan
%T Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 365-380
%V 198
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/
%G ru
%F TMF_2019_198_3_a0
Jialiang Dai; Engui Fan. Whitham hierarchy and generalized Picard–Fuchs operators in the $\mathcal N=2$ SUSY Yang–Mills theory for classical gauge groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 3, pp. 365-380. http://geodesic.mathdoc.fr/item/TMF_2019_198_3_a0/

[1] N. Seiberg, E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR

[2] K. Ito, N. Sasakura, “Exact and microscopic one-instanton calculations in $\mathcal N=2$ supersymmetric Yang–Mills theories”, Nucl. Phys. B, 484:1–22 (1997), 141–166, arXiv: hep-th/9608054 | DOI | MR

[3] E. D'Hoker, I. M. Krichever, D. H. Phong, “The effective prepotential of $N=2$ supersymmetric SU$(N_c)$ gauge theories”, Nucl. Phys. B, 489:1–2 (1997), 179–210, arXiv: hep-th/9609041 | DOI | MR

[4] E. D'Hoker, I. M. Krichever, D. H. Phong, “The effective prepotential of $N=2$ supersymmetric SO$(N_c)$ and Sp$(N_c)$ gauge theories”, Nucl. Phys. B, 489:1–2 (1997), 211–222, arXiv: hep-th/9609145 | DOI

[5] A. Klemm, W. Lerche, S. Theisen, “Nonperturbative effective actions of $N=2$-supersymmetric gauge theories”, Internat. J. Modern Phys. A, 11:11 (1996), 1929–1973, arXiv: hep-th/9505150 | DOI | MR

[6] J. M. Isidro, A. Mukherjee, J. P. Nunes, H. J. Schnitzer, “On the Picard–Fuchs equations for massive $N=2$ Seiberg–Witten theories”, Nucl. Phys. B, 502:1–2 (1997), 363–382, arXiv: hep-th/9704174 | DOI | MR

[7] J. M. Isidro, A. Mukherjee, J. P. Nunes, H. J. Schnitzer, “A new derivation of the Picard–Fuchs equations for effective $N=2$ super Yang–Mills theories”, Nucl. Phys. B, 492:3 (1997), 647–681, arXiv: hep-th/9609116 | DOI | MR

[8] M. Alishahiha, “On the Picard–Fuchs equations of the SW models”, Phys. Lett. B, 398:1–2 (1997), 100–103, arXiv: hep-th/9609157 | DOI | MR

[9] J. M. Isidro, “Integrability, Seiberg–Witten models and Picard–Fuchs equations”, JHEP, 01 (2001), 043, 11 pp., arXiv: hep-th/0011253 | DOI | MR

[10] K. Ito, S.-K. Yang, “Picard–Fuchs equations and prepotentials in $N=2$ supersymmetric QCD”, Frontiers in Quantum Field Theory (Osaka, Japan, December 14–17, 1995), eds. H. Itoyama, M. Kaku, H. Kunitomo, M. Nimomiya, H. Shirohura, World Sci., Singapore, 1996, 331–342, arXiv: hep-th/9603073 | MR

[11] K. Ito, “Picard–Fuchs equations and prepotential in $N=2$ supersymmetric $G_2$ Yang–Mills theory”, Phys. Lett. B, 406:1–2 (1997), 54–59, arXiv: hep-th/9703180 | DOI | MR

[12] T. Nakatsu, K. Takasaki, “Whitham–Toda hierarchy and $\mathcal N=2$ supersymmetric Yang–Mills theory”, Modern Phys. Lett. A, 11:2 (1996), 157–168, arXiv: hep-th/9509162 | DOI | MR

[13] E. D'Hoker, D. H. Phong, “Seiberg–Witten theory and integrable systems”, Integrability: the Seiberg–Witten and Whitham Equations (Edinburgh, 14–18 September, 1998), eds. H. W. Braden, I. M. Krichever, Gordon and Breach, Amsterdam, 2000, 43–68, arXiv: hep-th/9903068 | MR

[14] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Sci., Singapore, 1999 | DOI | MR

[15] K. Takasaki, “Whitham deformations of Seiberg–Witten curves for classical gauge groups”, Internat. J. Modern Phys. A, 15:23 (2000), 3635–3666, arXiv: hep-th/9901120 | DOI | MR

[16] K. Takasaki, “Whitham deformations and tau function in $N=2$ supersymmetric gauge theories”, Prog. Theor. Phys. Suppl., 135 (1999), 53–74, arXiv: hep-th/9905224 | DOI | MR

[17] L. Chekhov, A. Mironov, “Matrix models vs. Seiberg–Witten/Whitham theories”, Phys. Lett. B, 552:3–4 (2003), 293–302 | DOI | MR

[18] A. Marshakov, N. Nekrasov, “Extended Seiberg–Witten theory and integrable hierarchy”, JHEP, 01 (2007), 104, 39 pp., arXiv: :hep-th/0612019 | DOI | MR

[19] A. Gorsky, A. Milekhin, “RG-Whitham dynamics and complex Hamiltonian systems”, Nucl. Phys. B, 895 (2015), 33–63, arXiv: 1408.0425 | DOI | MR

[20] A. Gorsky, A. Marshakov, A. Mironov, A. Morozov, “RG equations from Whitham hierarchy”, Nucl. Phys. B, 527:3 (1998), 690–716, arXiv: hep-th/9802007 | DOI | MR

[21] Y. Ohta, “Picard–Fuchs equation and Whitham hierarchy in $N=2$ supersymmetric SU$(r+1)$ Yang–Mills theories”, J. Math. Phys., 40:12 (1999), 6292–6301, arXiv: hep-th/9906207 | DOI | MR

[22] H. Itoyama, A. Morozov, “Integrability and Seiberg–Witten theory: curves and periods”, Nucl. Phys. B, 477:3 (1996), 855–877, arXiv: hep-th/9511126 | DOI | MR

[23] J. D. Edelstein, J. Mas, “$N=2$ supersymmetric Yang–Mills theories and Whitham integrable hierarchies”, AIP Conf. Proc., 484:1 (2008), 195–212, arXiv: hep-th/9902161 | DOI | MR