@article{TMF_2019_198_2_a9,
author = {V. Popkov and D. Karevski and G. M. Sch\"utz},
title = {Exact results for the~isotropic spin-$1/2$ {Heisenberg} chain with dissipative boundary driving},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {341--362},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/}
}
TY - JOUR AU - V. Popkov AU - D. Karevski AU - G. M. Schütz TI - Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 341 EP - 362 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/ LA - ru ID - TMF_2019_198_2_a9 ER -
%0 Journal Article %A V. Popkov %A D. Karevski %A G. M. Schütz %T Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 341-362 %V 198 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/ %G ru %F TMF_2019_198_2_a9
V. Popkov; D. Karevski; G. M. Schütz. Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 341-362. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/
[1] D. Karevski, V. Popkov, G. M. Schütz, “Exact matrix product solution for the boundary-driven Lindblad $XXZ$ chain”, Phys. Rev. Lett., 110:4 (2013), 047201, 5 pp., arXiv: 1211.7010 | DOI
[2] D. Karevski, V. Popkov, G. M. Schütz, “Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results”, Phys. Rev. E, 88:6 (2013), 062118, 9 pp. | DOI
[3] T. Prosen, “Open $XXZ$ spin chain: nonequilibrium steady state and a strict bound on ballistic transport”, Phys. Rev. Lett., 106:21 (2011), 217206, 4 pp., arXiv: 1103.1350 | DOI
[4] T. Prosen, “Exact nonequilibrium steady state of a strongly driven open $XXZ$ chain”, Phys. Rev. Lett., 107:13 (2011), 137201, 5 pp., arXiv: 1106.2978 | DOI
[5] B. Buča, T. Prosen, “Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven $XXZ$ spin chains”, J. Stat. Mech., 2016:2 (2106), 023102, 24 pp. | DOI | MR
[6] T. Prosen, “Matrix product solutions of boundary driven quantum chains”, J. Phys. A: Math. Theor., 48:37 (2015), 373001, 68 pp. | DOI | MR
[7] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, “Macroscopic fluctuation theory”, Rev. Modern Phys., 87:2 (2015), 593–636, arXiv: 1404.6466 | DOI | MR
[8] H. Spohn, “Long range correlations for stochastic lattice gases in a non-equilibrium steady state”, J. Phys. A: Math. Gen., 16:18 (1983), 4275–4291 | DOI | MR
[9] V. Popkov, T. Prosen, “Infinitely dimensional Lax structure for one-dimensional Hubbard model”, Phys. Rev. Lett., 114:12 (2015), 127201, 5 pp., arXiv: 1501.02230 | DOI
[10] L. D. Faddeev, “The inverse problem in the quantum theory of scattering”, J. Math. Phys., 4:1 (1963), 72–104 | DOI | MR
[11] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR
[12] D. Karevski, V. Popkov, G. M. Schütz, “Matrix product ansatz for non-equilibrium quantum steady states.”, From Particle Systems to Partial Differential Equations (PSPDE 2015), Springer Proceedings in Mathematics and Statistics, 209, eds. P. Gonc̣alves, A. Soares, Springer, Cham, 2017, 221–245 | MR
[13] F. C. Alcaraz, S. Dasmahapatra, V. Rittenberg, “Stochastic models with boundaries and quadratic algebras”, Phys. A, 257:1–4 (1998), 1–9 | DOI | MR
[14] R. A. Blythe, M. R. Evans, “Nonequilibrium steady states of matrix-product form: a solver's guide”, J. Phys. A: Math. Theor., 40:46 (2007), R333–R441 | DOI | MR
[15] B. Derrida, “An exactly soluble non-equilibrium system: the asymmetric simple exclusion process”, Phys. Rep., 301:1–3 (1998), 65–83 | DOI | MR
[16] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems II. The Markovian Approach, Lecture Notes in Mathematics, 1881, Springer, Berlin, 2006 | MR
[17] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR
[18] A. Kossakowski, “On quantum statistical mechanics of non-Hamiltonian systems”, Rep. Math. Phys., 3:4 (1972), 247–274 | DOI | MR
[19] G. Lindblad, “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR
[20] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl
[21] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., 49:9–10 (1928), 619–636 | DOI
[22] V. Popkov, G. M. Schütz, “Solution of the Lindblad equation for spin helix states”, Phys. Rev. E, 95:4 (2017), 042128, 11 pp. | DOI
[23] V. Popkov, “Alternation of sign of magnetization current in driven $XXZ$ chains with twisted $XY$ boundary gradients”, J. Stat. Mech., 2012:12 (2012), P12015, 18 pp. | DOI | MR
[24] V. Popkov, R. Livi, “Manipulating energy and spin currents in non-equilibrium systems of interacting qubits”, New J. Phys., 15 (2013), 023030, 13 pp. | DOI | MR