Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 341-362
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the open isotropic spin-$1/2$ Heisenberg quantum spin chain with a finite number $N$ of sites coupled at the ends to a dissipative environment that favors polarization of the boundary spins in different directions. We review the matrix product ansatz (MPA) that yields the exact reduced density matrix of the Heisenberg chain. We develop the matrix algebra coming from the MPA in more detail than in previous work. We hence obtain exact results for the nonequilibrium partition function, about the impact of quantum fluctuations on the targeted boundary states, and for current–magnetization correlations in the steady state. The boundary states turn out to be pure to the order $o(N^{-2})$. We show that the local magnetization and the local current perpendicular to the plane spanned by the boundary polarizations exhibit long-range correlations while the local magnetization correlations with the local in-plane currents are strongly suppressed.
Keywords: nonequilibrium steady state, Heisenberg spin chain, driven system, exact result.
@article{TMF_2019_198_2_a9,
     author = {V. Popkov and D. Karevski and G. M. Sch\"utz},
     title = {Exact results for the~isotropic spin-$1/2$ {Heisenberg} chain with dissipative boundary driving},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {341--362},
     year = {2019},
     volume = {198},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/}
}
TY  - JOUR
AU  - V. Popkov
AU  - D. Karevski
AU  - G. M. Schütz
TI  - Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 341
EP  - 362
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/
LA  - ru
ID  - TMF_2019_198_2_a9
ER  - 
%0 Journal Article
%A V. Popkov
%A D. Karevski
%A G. M. Schütz
%T Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 341-362
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/
%G ru
%F TMF_2019_198_2_a9
V. Popkov; D. Karevski; G. M. Schütz. Exact results for the isotropic spin-$1/2$ Heisenberg chain with dissipative boundary driving. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 341-362. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a9/

[1] D. Karevski, V. Popkov, G. M. Schütz, “Exact matrix product solution for the boundary-driven Lindblad $XXZ$ chain”, Phys. Rev. Lett., 110:4 (2013), 047201, 5 pp., arXiv: 1211.7010 | DOI

[2] D. Karevski, V. Popkov, G. M. Schütz, “Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results”, Phys. Rev. E, 88:6 (2013), 062118, 9 pp. | DOI

[3] T. Prosen, “Open $XXZ$ spin chain: nonequilibrium steady state and a strict bound on ballistic transport”, Phys. Rev. Lett., 106:21 (2011), 217206, 4 pp., arXiv: 1103.1350 | DOI

[4] T. Prosen, “Exact nonequilibrium steady state of a strongly driven open $XXZ$ chain”, Phys. Rev. Lett., 107:13 (2011), 137201, 5 pp., arXiv: 1106.2978 | DOI

[5] B. Buča, T. Prosen, “Connected correlations, fluctuations and current of magnetization in the steady state of boundary driven $XXZ$ spin chains”, J. Stat. Mech., 2016:2 (2106), 023102, 24 pp. | DOI | MR

[6] T. Prosen, “Matrix product solutions of boundary driven quantum chains”, J. Phys. A: Math. Theor., 48:37 (2015), 373001, 68 pp. | DOI | MR

[7] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, “Macroscopic fluctuation theory”, Rev. Modern Phys., 87:2 (2015), 593–636, arXiv: 1404.6466 | DOI | MR

[8] H. Spohn, “Long range correlations for stochastic lattice gases in a non-equilibrium steady state”, J. Phys. A: Math. Gen., 16:18 (1983), 4275–4291 | DOI | MR

[9] V. Popkov, T. Prosen, “Infinitely dimensional Lax structure for one-dimensional Hubbard model”, Phys. Rev. Lett., 114:12 (2015), 127201, 5 pp., arXiv: 1501.02230 | DOI

[10] L. D. Faddeev, “The inverse problem in the quantum theory of scattering”, J. Math. Phys., 4:1 (1963), 72–104 | DOI | MR

[11] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[12] D. Karevski, V. Popkov, G. M. Schütz, “Matrix product ansatz for non-equilibrium quantum steady states.”, From Particle Systems to Partial Differential Equations (PSPDE 2015), Springer Proceedings in Mathematics and Statistics, 209, eds. P. Gonc̣alves, A. Soares, Springer, Cham, 2017, 221–245 | MR

[13] F. C. Alcaraz, S. Dasmahapatra, V. Rittenberg, “Stochastic models with boundaries and quadratic algebras”, Phys. A, 257:1–4 (1998), 1–9 | DOI | MR

[14] R. A. Blythe, M. R. Evans, “Nonequilibrium steady states of matrix-product form: a solver's guide”, J. Phys. A: Math. Theor., 40:46 (2007), R333–R441 | DOI | MR

[15] B. Derrida, “An exactly soluble non-equilibrium system: the asymmetric simple exclusion process”, Phys. Rep., 301:1–3 (1998), 65–83 | DOI | MR

[16] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems II. The Markovian Approach, Lecture Notes in Mathematics, 1881, Springer, Berlin, 2006 | MR

[17] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR

[18] A. Kossakowski, “On quantum statistical mechanics of non-Hamiltonian systems”, Rep. Math. Phys., 3:4 (1972), 247–274 | DOI | MR

[19] G. Lindblad, “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR

[20] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[21] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., 49:9–10 (1928), 619–636 | DOI

[22] V. Popkov, G. M. Schütz, “Solution of the Lindblad equation for spin helix states”, Phys. Rev. E, 95:4 (2017), 042128, 11 pp. | DOI

[23] V. Popkov, “Alternation of sign of magnetization current in driven $XXZ$ chains with twisted $XY$ boundary gradients”, J. Stat. Mech., 2012:12 (2012), P12015, 18 pp. | DOI | MR

[24] V. Popkov, R. Livi, “Manipulating energy and spin currents in non-equilibrium systems of interacting qubits”, New J. Phys., 15 (2013), 023030, 13 pp. | DOI | MR