Equivariant vector bundles over quantum projective spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 326-340
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct equivariant vector bundles over quantum projective spaces using parabolic Verma modules over the quantum general linear group. Using an alternative realization of the quantized coordinate ring of the projective space as a subalgebra in the algebra of functions on the quantum group, we reformulate quantum vector bundles in terms of quantum symmetric pairs. We thus prove the complete reducibility of modules over the corresponding coideal stabilizer subalgebras, via the quantum Frobenius reciprocity.
Keywords: quantum group, quantum projective space, vector bundle, symmetric pair.
@article{TMF_2019_198_2_a8,
     author = {A. I. Mudrov},
     title = {Equivariant vector bundles over quantum projective spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {326--340},
     year = {2019},
     volume = {198},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a8/}
}
TY  - JOUR
AU  - A. I. Mudrov
TI  - Equivariant vector bundles over quantum projective spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 326
EP  - 340
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a8/
LA  - ru
ID  - TMF_2019_198_2_a8
ER  - 
%0 Journal Article
%A A. I. Mudrov
%T Equivariant vector bundles over quantum projective spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 326-340
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a8/
%G ru
%F TMF_2019_198_2_a8
A. I. Mudrov. Equivariant vector bundles over quantum projective spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 326-340. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a8/

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Phys., 111:1 (1978), 61–110 | DOI | MR

[2] J. Donin, A. Mudrov, “Dynamical Yang–Baxter equation and quantum vector bundles”, Commun. Math. Phys., 254:3 (2005), 719–760 | DOI | MR

[3] A. Mudrov, “Quantum conjugacy classes of simple matrix groups”, Commun. Math. Phys., 272:3 (2007), 635–660 | DOI | MR

[4] T. Ashton, A. Mudrov, “Representations of quantum conjugacy classes of orthosymplectic groups”, Zap. nauchn. sem. POMI, 433 (2015), 20–40 | MR

[5] A. Mudrov, Contravariant form on tensor product of highest weight modules, arXiv: 1709.08394

[6] M. Semenov-Tian-Shansky, “Poisson–Lie groups, quantum duality principle, and the quantum double”, Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemporary Mathematics, 175, eds. P. J. Sally, Jr., M. Flato, J. Lepowsky, N. Reshetikhin, G. J. Zuckerman, AMS, Providence, RI, 1994, 219–248 | DOI | MR

[7] J.-P. Serre, “Faisceaux algébriques cohérents”, Ann. Math., 61:2 (1955), 197–278 | DOI | MR

[8] R. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105:2 (1962), 264–277 | DOI | MR

[9] G. Letzter, “Symmetric pairs for quantized enveloping algebras”, J. Algebra, 220:2 (1999), 729–767 | DOI | MR

[10] S. Kolb, “Quantum symmetric Kac–Moody pairs”, Adv. Math., 267 (2014), 395–469 | DOI | MR

[11] J. Donin, A. Mudrov, “Method of quantum characters in equivariant quantization”, Commun. Math. Phys., 234:3 (2003), 533–555, arXiv: math/0204298 | DOI | MR

[12] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | MR | Zbl

[13] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR

[14] P. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127 | DOI | MR

[15] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, v. 4, eds. M. Hazewinkel, Elsevier, Amsterdam, 2006, 109–170 | DOI | MR

[16] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR

[17] E. Karolinsky, A. Stolin, V. Tarasov, “Equivariant quantization of Poisson homogeneous spaces and Kostant's problem”, J. Algebra, 409 (2014), 362–381 | DOI | MR

[18] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[19] A. Mudrov, “Characters of the $\mathcal U_q (sl(n))$-reflection equation algebra”, Lett. Math. Phys., 60:3 (2002), 283–291 | DOI | MR

[20] P. P. Kulish, E. K. Sklyanin, “Algebraic structure related to the reflection equation”, J. Phys. A, 25:22 (1992), 5963–5975, arXiv: hep-th/9209054 | DOI | MR