@article{TMF_2019_198_2_a8,
author = {A. I. Mudrov},
title = {Equivariant vector bundles over quantum projective spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {326--340},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a8/}
}
A. I. Mudrov. Equivariant vector bundles over quantum projective spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 326-340. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a8/
[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Phys., 111:1 (1978), 61–110 | DOI | MR
[2] J. Donin, A. Mudrov, “Dynamical Yang–Baxter equation and quantum vector bundles”, Commun. Math. Phys., 254:3 (2005), 719–760 | DOI | MR
[3] A. Mudrov, “Quantum conjugacy classes of simple matrix groups”, Commun. Math. Phys., 272:3 (2007), 635–660 | DOI | MR
[4] T. Ashton, A. Mudrov, “Representations of quantum conjugacy classes of orthosymplectic groups”, Zap. nauchn. sem. POMI, 433 (2015), 20–40 | MR
[5] A. Mudrov, Contravariant form on tensor product of highest weight modules, arXiv: 1709.08394
[6] M. Semenov-Tian-Shansky, “Poisson–Lie groups, quantum duality principle, and the quantum double”, Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemporary Mathematics, 175, eds. P. J. Sally, Jr., M. Flato, J. Lepowsky, N. Reshetikhin, G. J. Zuckerman, AMS, Providence, RI, 1994, 219–248 | DOI | MR
[7] J.-P. Serre, “Faisceaux algébriques cohérents”, Ann. Math., 61:2 (1955), 197–278 | DOI | MR
[8] R. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105:2 (1962), 264–277 | DOI | MR
[9] G. Letzter, “Symmetric pairs for quantized enveloping algebras”, J. Algebra, 220:2 (1999), 729–767 | DOI | MR
[10] S. Kolb, “Quantum symmetric Kac–Moody pairs”, Adv. Math., 267 (2014), 395–469 | DOI | MR
[11] J. Donin, A. Mudrov, “Method of quantum characters in equivariant quantization”, Commun. Math. Phys., 234:3 (2003), 533–555, arXiv: math/0204298 | DOI | MR
[12] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | MR | Zbl
[13] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR
[14] P. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127 | DOI | MR
[15] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, v. 4, eds. M. Hazewinkel, Elsevier, Amsterdam, 2006, 109–170 | DOI | MR
[16] S. Khoroshkin, O. Ogievetsky, “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319:5 (2008), 2113–2165 | DOI | MR
[17] E. Karolinsky, A. Stolin, V. Tarasov, “Equivariant quantization of Poisson homogeneous spaces and Kostant's problem”, J. Algebra, 409 (2014), 362–381 | DOI | MR
[18] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl
[19] A. Mudrov, “Characters of the $\mathcal U_q (sl(n))$-reflection equation algebra”, Lett. Math. Phys., 60:3 (2002), 283–291 | DOI | MR
[20] P. P. Kulish, E. K. Sklyanin, “Algebraic structure related to the reflection equation”, J. Phys. A, 25:22 (1992), 5963–5975, arXiv: hep-th/9209054 | DOI | MR