@article{TMF_2019_198_2_a7,
author = {D. A. Leites},
title = {Two problems in the~theory of differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {309--325},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a7/}
}
D. A. Leites. Two problems in the theory of differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 309-325. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a7/
[1] K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge, Cambridge Univ. Press, 1997 | MR
[2] D. A. Leites, “Novye superalgebry Li i mekhanika”, Dokl. AN SSSR, 236:4 (1977), 804–807 | MR | Zbl
[3] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR
[4] P. Ya. Grozman, “Klassifikatsiya bilineinykh invariantnykh operatorov na tenzornykh polyakh”, Funkts. analiz i ego pril., 14:2 (1980), 58–59, arXiv: math/0509562 | DOI | MR | Zbl
[5] D. Leites, I. Shchepochkina, Classification of simple Lie superalgebras of vector fields, Preprint MPIM-Bonn 2003-28, Max Planck Institute for Mathematics, Bonn, 2003 http://www.mpim-bonn.mpg.de/preprints/
[6] V. Kac, “Classification of infinite-dimensional simple linearly compact Lie superalgebras”, Adv. Math., 139:1 (1998), 1–55 | DOI | MR
[7] I. Shchepochkina, “Five exceptional simple Lie superalgebras of vector fields and their fourteen regradings”, Represent. Theory, 3 (1999), 373–415 | DOI | MR
[8] N. Cantarini, V. G. Kac, “Infinite-dimensional primitive linearly compact Lie superalgebras”, Adv. Math., 207:1 (2006), 328–419 | MR
[9] N. Cantarini, V. G. Kac, “Classification of linearly compact simple rigid superalgebras”, IMRN, 2010:17 (2010), 3341–3393, arXiv: 0909.3100 | DOI | MR
[10] S.-J. Cheng, V. Kac, “Generalized Spencer cohomology and filtered deformations of ${\mathbb Z}$-graded Lie superalgebras”, Adv. Theor. Math. Phys., 2:5 (1998), 1141–1182 ; Addendum, 8:4 (2004), 697–709 | DOI | MR | DOI | MR
[11] S. J. Cheng, V. G. Kac, “Structure of some $\mathbb Z$-graded Lie superalgebras of vector fields”, Transform. Groups, 4:2–3 (1999), 219–272 ; Erratum, 9:4 (2004), 399–400 | DOI | MR | DOI | MR
[12] D. A. Leites, I. M. Schepochkina, “Kak kvantovat antiskobku?”, TMF, 126:3 (2001), 339–369, arXiv: math-ph/0510048 | DOI | MR | Zbl
[13] Sh.-J. Cheng, V. G. Kac, “Generalized Spencer cohomology and filtered deformations of $\mathbb Z$-graded Lie superalgebras”, Adv. Theor. Math. Phys., 2:5 (1998), 1141–1182, arXiv: math.RT/9805039 | DOI | MR
[14] B. Kostant, “Graded manifolds, graded Lie theory, and prequantization”, Differential Geometrical Methods in Mathematical Physics (University of Bonn, July 1–4, 1975), Lecture Notes in Mathematics, 570, eds. K. Bleuler, A. Reetz, Springer, Berlin, 1977, 177–306 | DOI | MR
[15] I. A. Batalin, G. A. Vilkovisky, “Gauge algebra and quantization”, Phys. Lett. B, 102:1 (1981), 27–31 ; “Quantization of gauge theories with linearly dependent generators”, Phys. Rev. D, 28:10 (1983), 2567–2582 ; Erratum, 30:2 (1984), 508 | DOI | MR | DOI | MR | DOI
[16] V. Dotsenko, S. Shadrin, B. Vallette, “Givental group action on topological field theories and homotopy Batalin–Vilkovisky algebras”, Adv. Math., 236 (2013), 224–256, arXiv: 1112.1432 | DOI | MR
[17] P. Grozman, SuperLie. A Mathematica package for calculations in Lie algebras and superalgebras, http://www.equaonline.com/math/SuperLie
[18] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior Differential Systems, Mathematical Sciences Research Institute Publications, 18, Springer, New York, 1991 | DOI | MR
[19] P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison, E. Witten (eds.), Quantum Fields and Strings: A Course for Mathematicians (Institute for Advanced Study, Princeton, NJ, 1996–1997), v. 1, AMS, Providence, RI, 1999 | MR
[20] I. N. Bernshtein, D. A. Leites, V. N. Shander, Seminar po supersimmetriyam, v. 1, Algebra i analiz: osnovnye fakty, ed. D. Leites, MTsNMO, M., 2011
[21] F. Berezin, Vvedenie v superanaliz, MTsNMO, M., 2013 | MR
[22] D. Leites, “The Riemann tensor for nonholonomic manifolds”, Homology Homotopy Appl., 4:2 (2002), 397–407 | DOI | MR
[23] I. M. Schepochkina, “Kak realizovat algebru Li vektornymi polyami”, TMF, 147:3 (2006), 450–469, arXiv: math.RT/0509472 | DOI | DOI | MR | Zbl
[24] V. N. Shander, “O polnoi integriruemosti obyknovennykh differentsialnykh uravnenii na supermnogoobraziyakh”, Funkts. analiz i ego pril., 17:1 (1983), 89–90 | DOI | MR | Zbl
[25] V. Molotkov, “Infinite-dimensional and colored supermanifolds”, J. Nonlinear Math. Phys., 17, suppl. 1 (2010), 375–446 | DOI | MR
[26] D. Giulini, “The Superspace of geometrodynamics”, Gen. Rel. Grav., 41 (2009), 785–815, arXiv: 0902.3923 | DOI | MR
[27] D. A. Leites, “Spektry graduirovanno-kommutativnykh kolets”, UMN, 29:3(177) (1974), 209–210 | MR | Zbl
[28] W. I. Fushchich, A. G. Nikitin, Symmetries of Maxwell's Equations, Mathematics and Its Applications, 8, Reidel, Dordrecht, 1987 ; J. Niederle, A. G. Nikitin, “Extended supersymmetries for the Schrödinger–Pauli equation”, J. Math. Phys., 40:3 (1999), 1280–1293 | DOI | MR | MR | DOI | MR
[29] S. Duplij, J. Bagger, W. Siegel (eds.), Concise Encyclopedia of Supersymmetry. And Noncommutative Structures in Mathematics and Physics, Kluwer, Dordrecht, 2003 | MR
[30] S. Buarrudzh, P. Ya. Grozman, D. A. Leites, I. M. Schepochkina, “Superprostranstva Minkovskogo i superstruny kak veschestvenno-kompleksnye supermnogoobraziya”, TMF, 173:3 (2012), 416–440, arXiv: 1010.4480 | DOI | DOI | MR
[31] É. Cartan, {ØE}uvres complètes. Partie II. Algèbre, systèmes différentiels et problèmes d'équivalence, Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1984 | MR
[32] Dzh. A. Uiler, Predvidenie Einshteina, Mir, M., 1970 | Zbl
[33] Yu. I. Manin, Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984 | DOI | MR | MR
[34] A. V. Zorich, “Integrirovanie psevdodifferentsialnykh form i obraschenie integralnykh preobrazovanii tipa preobrazovaniya Radona”, UMN, 42:4(256) (1987), 185–186 | DOI | MR | Zbl
[35] D. Quillen, “Superconnections and the Chern character, topology”, Internat. J. Math., 24:1 (1985), 89–95 | MR
[36] N. Berline, E. Getzler, M. Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 298, Springer, Berlin–Heidelberg–New York, 1992 | MR
[37] D. Leites, “The index theorem for homogeneous differential operators on supermanifolds”, Supersymmetries and Quantum Symmetries SQS' 99 (Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, 27–31 July, 1999), eds. E. Ivanov, S. Krivonos, A. Pashnev, JINR, Dubna, 2000, 405–408, arXiv: math-ph/0202024
[38] D. Leites, I. Shchepochkina, “The Howe duality and Lie superalgebras”, Noncommutative Structures in Mathematics and Physics, NATO Advanced Research Workshop (Kiev, Ukraine, September 24–28, 2000), NATO Science Series. Series II: Mathematics, Physics and Chemistry, 22, eds. S. Duplij, J. Wess, Springer, Dordrecht, 2001, 93–111, arXiv: math.RT/0202181 | DOI
[39] J. Wess, J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, Princeton, NJ, 1992 | MR
[40] E. Witten, “An interpretation of classical Yang–Mills theory”, Phys. Lett. B, 77:4–5 (1978), 394–398 | DOI
[41] E. Witten, “Dynamical breaking of supersymmetry”, Nucl. Phys. B, 188:3 (1981), 513–554 | DOI
[42] L. E. Gendenshtein, I. V. Krive, “Supersimmetriya v kvantovoi mekhanike”, UFN, 146:8 (1985), 553–590 | DOI | MR
[43] J. Brundan, “Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra $\mathfrak q(n)$”, Adv. Math., 182:1 (2004), 28–77, arXiv: math/0207024 | DOI | MR
[44] S.-J. Cheng, J.-H. Kwon, “Finite-dimensional half-integer weight modules over queer Lie superalgebras”, Commun. Math. Phys., 346:3 (2016), 945–965, arXiv: 1505.06602 | DOI | MR
[45] A. A. Kirillov, “Orbity gruppy diffeomorfizmov okruzhnosti i lokalnye superalgebry Li”, Funkts. analiz i ego pril., 15:2 (1981), 75–76 | DOI | MR | Zbl
[46] P. Grozman, D. Leites, I. Shchepochkina, “Lie superalgebras of string theories”, Acta Math. Vietnam., 26:1 (2001), 27–63, arXiv: hep-th/9702120 | MR
[47] V. Yu. Ovsienko, O. D. Ovsienko, Yu. V. Chekanov, “Klassifikatsiya kontaktno-proektivnykh struktur na superokruzhnosti”, UMN, 44:3 (1989), 167–168 | DOI | MR | Zbl
[48] D. Leites, “Supersymmetry of the Sturm–Liouville and Korteveg–de Vries operators”, Operator Methods in Ordinary and Partial Differential Equations, Proceedings of the Marcus Wallenberg Symposium in Memory of Sonja Kovalevsky (Stockholm University, Stockholm, June 18–22, 2000), Operator Theory: Advances and Applications, 132, eds. S. Albeverio, N. Elander, W. N. Everitt, P. Kurasov, Birkhäuser, Basel, 2002, 267–285 | MR
[49] S. Mokhammadzade, D. B. Fuks, “Kogomologii algebry Li $\mathfrak H_2$: eksperimentalnye rezultaty i gipotezy”, Funkts. analiz i ego pril., 48:2 (2014), 67–78 | DOI | DOI | MR | Zbl
[50] V. Kornyak, “Computation of cohomology of Lie superalgebras of vector fields”, Internat. J. Modern Phys. C, 11:2 (2000), 397–413, arXiv: math/0002210 | MR
[51] P. Grozman, D. Leites, “From supergravity to ballbearings”, Supersymmetries and quantum symmetries SQS' 97 (Dubna, Russia, 22–26 July, 1997), Lecture Notes in Physics, 524, eds. J. Wess, E. Ivanov, Springer, Berlin–Heidelberg, 1999, 58–67 | DOI | MR
[52] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR
[53] I. Zelenko, “On Tanaka's prolongation procedure for filtered structures of constant type”, SIGMA, 5 (2009), 094, 21 pp. | DOI | MR
[54] D. Alekseevsky, L. David, “Prolongation of Tanaka structures: an alternative approach”, Ann. Mat., 196:3 (2017), 1137–1164, arXiv: 1603.00700 | DOI | MR
[55] D. The, “Exceptionally simple PDE”, Differ. Geom. Appl., 56 (2018), 13–41, arXiv: 1603.08251 | DOI | MR
[56] V. Sergeev, Predely ratsionalnosti, Fazis, M., 1999
[57] V. P. Pavlov, Negolonomnaya mekhanika Diraka i differentsialnaya geometriya, Lektsionnye kursy NOTs, 22, MIAN, M., 2014 | DOI
[58] V. P. Pavlov, V. M. Sergeev, “Termodinamika s tochki zreniya differentsialnoi geometrii”, TMF, 157:1 (2008), 141–148 | DOI | DOI | MR | Zbl
[59] V. Sergeev, The thermodynamic approach to markets, arXiv: 0803.3432
[60] E. Poletaeva, The analogs of Riemann and Penrose tensors on supermanifolds, arXiv: math/0510165
[61] D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, Springer US, New York, 1986 | DOI | MR
[62] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 21, VINITI, M., 1988, 121–209 | MR | Zbl