Mots-clés : spin chain, anomalous dimension
@article{TMF_2019_198_2_a6,
author = {R. N. Lee and A. I. Onischenko},
title = {Toward an~analytic perturbative solution for {the~ABJM} quantum spectral curve},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {292--308},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a6/}
}
TY - JOUR AU - R. N. Lee AU - A. I. Onischenko TI - Toward an analytic perturbative solution for the ABJM quantum spectral curve JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 292 EP - 308 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a6/ LA - ru ID - TMF_2019_198_2_a6 ER -
R. N. Lee; A. I. Onischenko. Toward an analytic perturbative solution for the ABJM quantum spectral curve. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 292-308. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a6/
[1] G. 't Hooft, “A planar diagram theory for strong interactions”, Nucl. Phys. B, 72:3 (1974), 461–473 | DOI
[2] J. M. Maldacena, “The large $N$ limit of superconformal field theories and supergravity”, Internat. J. Theor. Phys., 38:4 (1999), 1113–1133, arXiv: ; “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2:2 (1998), 231–252 hep-th/9711200 | DOI | MR | DOI | MR | Zbl
[3] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B, 428:1–2 (1998), 105–114, arXiv: hep-th/9802109 | DOI | MR
[4] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2:2 (1998), 253–291, arXiv: hep-th/9802150 | DOI | MR
[5] N. Beisert, C. Ahn, L. F. Alday et al., “Review of AdS/CFT integrability: an overview”, Lett. Math. Phys., 99:1–3 (2012), 3–32, arXiv: 1012.3982 | DOI | MR
[6] D. Bombardelli, A. Cagnazzo, R. Frassek, F. Levkovich-Maslyuk, F. Loebbert, S. Negro, I. M. Szécsényi, A. Sfondrini, S. J. van Tongeren, A. Torrielli, “An integrability primer for the gauge-gravity correspondence: an introduction”, J. Phys. A: Math. Theor., 49:32 (2016), 320301, 10 pp., arXiv: 1606.02945 | DOI | MR
[7] S. J. van Tongeren, “Integrability of the ${\rm AdS}_{5}\times {\rm S}^{5}$ superstring and its deformations”, J. Phys. A: Math. Theor., 47:43 (2014), 433001, 213 pp., arXiv: 1310.4854 | DOI | MR
[8] M. de Leeuw, A. C. Ipsen, C. Kristjansen, M. Wilhelm, “Introduction to integrability and one-point functions in $\mathcal N=4$ SYM and its defect cousin”, Integrability: From Statistical Systems to Gauge Theory (Les Houches, France, 6 June – 1 July, 2016), Les Houches School of Physics, Les Houches, France, 2017, arXiv: 1708.02525
[9] N. Gromov, Introduction to the spectrum of ${\mathcal N=4}$ SYM and the quantum spectral curve, arXiv: 1708.03648
[10] S. Komatsu, Lectures on three-point functions in ${\mathcal N=4}$ supersymmetric Yang–Mills theory, arXiv: 1710.03853
[11] V. Kazakov, “Quantum spectral curve of $\gamma$-twisted ${\mathcal N=4}$ SYM theory and fishnet CFT”, Rev. Math. Phys., 30:7 (2018), 1840010, arXiv: 1802.02160 | DOI | MR
[12] O. Aharony, O. Bergman, D. L. Jafferis, J. Maldacena, “$N=6$ superconformal Chern–Simons-matter theories $M2$-branes and their gravity duals”, JHEP, 10 (2008), 091, 38 pp., arXiv: 0806.1218 | DOI | MR
[13] M. Staudacher, “The factorized $S$-matrix of CFT/AdS”, JHEP, 05 (2005), 054, 35 pp., arXiv: hep-th/0412188 | DOI | MR
[14] G. Arutyunov, S. Frolov, M. Staudacher, “Bethe ansatz for quantum strings”, JHEP, 10 (2004), 016, 21 pp., arXiv: hep-th/0406256 | DOI | MR
[15] N. Beisert, “The $SU(2|2)$ dynamic S-matrix”, Adv. Theor. Math. Phys., 12:5 (2008), 945–979, arXiv: hep-th/0511082 | DOI | MR
[16] N. Beisert, “The analytic Bethe ansatz for a chain with centrally extended $\mathfrak{su}(2|2)$ symmetry”, J. Stat. Mech., 01 (2007), P01017, 63 pp., arXiv: nlin/0610017 | DOI | MR
[17] N. Beisert, B. Eden, M. Staudacher, “Transcendentality and Crossing”, J. Stat. Mech., 2007:01 (2007), P01021, arXiv: hep-th/0610251 | DOI
[18] R. A. Janik, “The $\mathrm{AdS}_5\times S^5$ superstring worldsheet $S$-matrix and crossing symmetry”, Phys. Rev. D, 73:8 (2006), 086006, 10 pp., arXiv: hep-th/0603038 | DOI | MR
[19] G. Arutyunov, S. Frolov, “On $\mathrm{AdS}_5\times S^5$ string S-matrix”, Phys. Lett. B, 639:3–4 (2006), 378–382, arXiv: hep-th/0604043 | DOI | MR
[20] G. Arutyunov, S. Frolov, M. Zamaklar, “The Zamolodchikov–Faddeev algebra for $\mathrm{AdS}_5\times S^5$ superstring”, JHEP, 04 (2007), 002, 38 pp., arXiv: hep-th/0612229 | DOI | MR
[21] C. Ahn, R. I. Nepomechie, “$\mathscr N=6$ super Chern–Simons theory $S$-matrix and allloop Bethe ansatz equations”, JHEP, 09 (2008), 010, 12 pp., arXiv: 0807.1924 | DOI | MR
[22] J. A. Minahan, K. Zarembo, “The Bethe ansatz for $\mathcal N=4$ super Yang–Mills”, JHEP, 03 (2003), 013, 29 pp., arXiv: hep-th/0212208 | DOI | MR
[23] N. Beisert, M. Staudacher, “The $\mathcal N=4$ SYM integrable super spin chain”, Nucl. Phys. B, 670:3 (2003), 439–463, arXiv: hep-th/0307042 | DOI | MR
[24] N. Beisert, M. Staudacher, “Long-range $\mathfrak{psu}(2; 2|4)$ Bethe ansatze for gauge theory and strings”, Nucl. Phys. B, 727:1–2 (2005), 1–62, arXiv: hep-th/0504190 | DOI | MR
[25] J. A. Minahan, K. Zarembo, “The Bethe ansatz for superconformal Chern–Simons”, JHEP, 09 (2008), 040, 22 pp., arXiv: 0806.3951 | DOI | MR
[26] D. Gaiotto, S. Giombi, X. Yin, “Spin chains in $N=6$ superconformal Chern–Simons-matter theory”, JHEP, 04 (2009), 066, 18 pp., arXiv: 0806.4589 | DOI | MR
[27] N. Gromov, P. Vieira, “The all loop $AdS_4/CFT_3$ Bethe ansatz”, JHEP, 01 (2009), 016, 27 pp., arXiv: 0807.0777 | DOI | MR
[28] N. Gromov, V. Kazakov, P. Vieira, “Exact spectrum of anomalous dimensions of planar $\mathscr N=4$ supersymmetric Yang–Mills theory”, Phys. Rev. Lett., 103:13 (2009), 131601, 4 pp., arXiv: 0901.3753 | DOI | MR
[29] D. Bombardelli, D. Fioravanti, R. Tateo, “Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal”, J. Phys. A: Math. Theor., 42:37 (2009), 375401, 20 pp., arXiv: 0902.3930 | MR
[30] N. Gromov, V. Kazakov, A. Kozak, P. Vieira, “Exact spectrum of anomalous dimensions of planar $\mathcal N=4$ supersymmetric Yang–Mills theory: TBA and excited states”, Lett. Math. Phys., 91:3 (2010), 265–287, arXiv: 0902.4458 | DOI | MR
[31] G. Arutyunov, S. Frolov, “Thermodynamic Bethe ansatz for the AdS$_5\times S^5$ mirror model”, JHEP, 05 (2009), 068, 29 pp., arXiv: 0903.0141 | DOI | MR
[32] A. Cavaglia, D. Fioravanti, R. Tateo, “Extended $Y$-system for the $\mathrm{AdS}_5/\mathrm{CFT}_4$ correspondence”, Nucl. Phys. B, 843:1 (2011), 302–343, arXiv: 1005.3016 | DOI | MR
[33] J. Balog, Á. Hegedűs, “$AdS_5\times S^5$ mirror TBA equations from $Y$-system and discontinuity relations”, JHEP, 08 (2011), 095, 68 pp., arXiv: 1104.4054 | DOI | MR
[34] N. Gromov, V. Kazakov, S. Leurent, Z. Tsuboi, “Wronskian solution for AdS/CFT Y-system”, JHEP, 01 (2011), 155, 32 pp., arXiv: 1010.2720 | DOI | MR
[35] N. Gromov, V. Kazakov, S. Leurent, D. Volin, “Solving the AdS/CFT Y-system”, JHEP, 07 (2012), 023, 65 pp., arXiv: 1110.0562 | DOI | MR
[36] D. Bombardelli, D. Fioravanti, R. Tateo, “TBA and Y-system for planar AdS$_4$/CFT$_3$”, Nucl. Phys. B, 834:3 (2010), 543–561, arXiv: 0912.4715 | DOI | MR
[37] N. Gromov, F. Levkovich-Maslyuk, “Y-system, TBA and quasi-classical strings in AdS$_4 \times \mathbb{CP}^3$”, JHEP, 06 (2010), 088, 37 pp., arXiv: 0912.4911 | DOI | MR
[38] A. Cavaglià, D. Fioravanti, R. Tateo, “Discontinuity relations for the AdS$_4$/CFT$_3$ correspondence”, Nucl. Phys. B, 877:3 (2013), 852–884, arXiv: 1307.7587 | DOI | MR
[39] D. Correa, J. Maldacena, A. Sever, “The quark anti-quark potential and the cusp anomalous dimension from a TBA equation”, JHEP, 08 (2012), 134, 56 pp., arXiv: 1203.1913 | DOI
[40] N. Drukker, “Integrable Wilson loops”, JHEP, 10 (2013), 135, 38 pp., arXiv: 1203.1617 | DOI | MR
[41] N. Gromov, F. Levkovich-Maslyuk, “Quantum spectral curve for a cusped Wilson line in $\mathcal N=4$ SYM”, JHEP, 04 (2016), 134, 41 pp., arXiv: 1510.02098 | DOI
[42] N. Gromov, F. Levkovich-Maslyuk, “Quark-anti-quark potential in $\mathcal N=4$ SYM”, JHEP, 12 (2016), 122, 29 pp., arXiv: 1601.05679 | DOI
[43] L. F. Alday, D. Gaiotto, J. Maldacena, “Thermodynamic bubble ansatz”, JHEP, 09 (2011), 032, 46 pp., arXiv: 0911.4708 | DOI | MR
[44] L. F. Alday, J. Maldacena, A. Sever, P. Vieira, “$Y$-system for scattering amplitudes”, J. Phys. A: Math. Theor., 43:48 (2010), 485401, 57 pp., arXiv: 1002.2459 | MR
[45] L. F. Alday, D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, “An operator product expansion for polygonal null Wilson loops”, JHEP, 04 (2011), 088, 41 pp., arXiv: 1006.2788 | DOI | MR
[46] B. Basso, A. Sever, P. Vieira, “Spacetime and flux tube $S$-matrices at finite coupling for $\mathscr N=4$ supersymmetric Yang–Mills theory”, Phys. Rev. Lett., 111:9 (2013), 091602, 4 pp., arXiv: 1303.1396 | DOI
[47] B. Basso, J. Caetano, L. Cordova, A. Sever, P. Vieira, “OPE for all helicity amplitudes”, JHEP, 08 (2015), 018, 28 pp., arXiv: 1412.1132 | DOI | MR
[48] D. Fioravanti, S. Piscaglia, M. Rossi, “Asymptotic bethe ansatz on the GKP vacuum as a defect spin chain: scattering particles and minimal area Wilson loops”, Nucl. Phys. B, 898 (2015), 301–400, arXiv: 1503.08795 | DOI | MR
[49] B. Basso, S. Caron-Huot, A. Sever, “Adjoint BFKL at finite coupling: a shortcut from the collinear limit”, JHEP, 01 (2015), 027, 46 pp., arXiv: 1407.3766 | DOI
[50] M. Alfimov, N. Gromov, V. Kazakov, “QCD pomeron from AdS/CFT quantum spectral curve”, JHEP, 07 (2015), 164, 24 pp., arXiv: 1408.2530 | DOI | MR
[51] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “Pomeron eigenvalue at three loops in $\mathcal N=4$ supersymmetric Yang–Mills theory”, Phys. Rev. Lett., 115:25 (2015), 251601, 5 pp., arXiv: 1507.04010 | DOI | MR
[52] M. Alfimov, N. Gromov, G. Sizov, “BFKL spectrum of $\mathcal N=4$ SYM: non-zero conformal spin”, JHEP, 07 (2018), 181, 78 pp., arXiv: 1802.06908 | DOI
[53] B. Basso, S. Komatsu, P. Vieira, Structure constants and integrable bootstrap in planar $\mathcal N=4$ SYM theory, arXiv: 1505.06745
[54] B. Basso, V. Gonçalves, S. Komatsu, “Structure constants at wrapping order”, JHEP, 05 (2017), 124, 69 pp., arXiv: 1702.02154 | DOI | MR
[55] Y. Jiang, S. Komatsu, I. Kostov, D. Serban, “Clustering and the three-point function”, J. Phys. A: Math. Theor., 49:45 (2016), 454003, 59 pp., arXiv: 1604.03575 | DOI | MR
[56] I. Balitsky, V. Kazakov, E. Sobko, “Structure constant of twist-2 light-ray operators in the Regge limit”, Phys. Rev. D, 93:6 (2016), 061701, 6 pp., arXiv: 1506.02038 | DOI | MR
[57] A. Cavaglià, N. Gromov, F. Levkovich-Maslyuk, “Quantum spectral curve and structure constants in $\mathcal N=4$ SYM: cusps in the ladder limit”, JHEP, 10 (2018), 060, 68 pp., arXiv: 1802.04237 | DOI
[58] B. Eden, A. Sfondrini, “Tessellating cushions: four-point functions in $\mathcal N=4$ SYM”, JHEP, 10 (2017), 098, 12 pp., arXiv: 1611.05436 | DOI | MR
[59] B. Eden, Y. Jiang, D. le Plat, A. Sfondrini, “Colour-dressed hexagon tessellations for correlation functions and non-planar corrections”, JHEP, 02 (2018), 170, 44 pp., arXiv: 1710.10212 | DOI | MR
[60] T. Bargheer, J. Caetano, T. Fleury, S. Komatsu, P. Vieira, Handling handles I: nonplanar integrability, arXiv: 1711.05326
[61] T. Fleury, S. Komatsu, “Hexagonalization of correlation functions II: two-particle contributions”, JHEP, 02 (2018), 177, 34 pp., arXiv: 1711.05327 | DOI | MR
[62] S. Giombi, S. Komatsu, “Exact correlators on the Wilson loop in $\mathcal N=4$ SYM: localization defect CFT, and integrability”, JHEP, 05 (2018), 109, 45 pp., arXiv: 1802.05201 | DOI | MR
[63] B. Eden, Y. Jiang, M. de Leeuw, T. Meier, D. le Plat, A. Sfondrini, Positivity of hexagon perturbation theory, arXiv: 1806.06051
[64] M. de Leeuw, C. Kristjansen, K. Zarembo, “One-point functions in defect CFT and integrability”, JHEP, 08 (2015), 098, 25 pp., arXiv: 1506.06958 | DOI | MR
[65] I. Buhl-Mortensen, M. de Leeuw, C. Kristjansen, K. Zarembo, “One-point functions in AdS/dCFT from matrix product states”, JHEP, 02 (2016), 052, 21 pp., arXiv: 1512.02532 | DOI | MR
[66] I. Buhl-Mortensen, M. de Leeuw, A. C. Ipsen, C. Kristjansen, M. Wilhelm, “One-loop one-point functions in gauge-gravity dualities with defects”, Phys. Rev. Lett., 117:23 (2016), 231603, 6 pp., arXiv: 1606.01886 | DOI | MR
[67] T. Harmark, M. Wilhelm, “Hagedorn temperature of AdS$_5$/CFT$_4$ via integrability”, Phys. Rev. Lett., 120:7 (2018), 071605, 6 pp., arXiv: 1706.03074 | DOI
[68] T. Harmark, M. Wilhelm, “The Hagedorn temperature of AdS$_5$/CFT$_4$ at finite coupling via the Quantum Spectral Curve”, Phys. Lett. B, 786 (2018), 53–58, arXiv: 1803.04416 | DOI | MR
[69] N. Gromov, V. Kazakov, S. Leurent, D. Volin, “Quantum spectral curve for planar $\mathcal N=4$ Super-Yang–Mills theory”, Phys. Rev. Lett., 112:1 (2014), 011602, 5 pp., arXiv: 1305.1939 | DOI
[70] N. Gromov, V. Kazakov, S. Leurent, D. Volin, “Quantum spectral curve for arbitrary state/operator in AdS$_5$/CFT$_4$”, JHEP, 09 (2015), 187, 104 pp., arXiv: 1405.4857 | DOI | MR
[71] V. Kazakov, S. Leurent, D. Volin, “T-system on T-hook: grassmannian solution and twisted quantum spectral curve”, JHEP, 12 (2016), 044, 118 pp., arXiv: 1510.02100 | DOI | MR
[72] C. Marboe, D. Volin, “The full spectrum of AdS$_5$/CFT$_4$ I: representation theory and one-loop Q-system”, J. Phys. A: Math. Theor., 51:16 (2018), 165401, 46 pp., arXiv: 1701.03704 | MR
[73] A. Cavaglià, D. Fioravanti, N. Gromov, R. Tateo, “Quantum spectral curve of the $\mathcal N=6$ supersymmetric Chern–Simons theory”, Phys. Rev. Lett., 113:2 (2014), 021601, 5 pp., arXiv: 1403.1859 | DOI
[74] D. Bombardelli, A. Cavaglià, D. Fioravanti, N. Gromov, R. Tateo, “The full quantum spectral curve for AdS$_4$/CFT$_3$”, JHEP, 09 (2017), 140, 70 pp., arXiv: 1701.00473 | DOI | MR
[75] R. Klabbers, S. J. van Tongeren, “Quantum Spectral Curve for the eta-deformed AdS5xS5 superstring”, Nucl. Phys. B, 925 (2017), 252–318, arXiv: 1708.02894 | DOI | MR
[76] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “Quantum spectral curve and the numerical solution of the spectral problem in AdS$_5$/CFT$_4$”, JHEP, 06 (2016), 036, 26 pp., arXiv: 1504.06640 | DOI | MR
[77] Á. Hegedűs, J. Konczer, “Strong coupling results in the AdS$_{5}$/CFT$_{4}$ correspondence from the numerical solution of the quantum spectral curve”, JHEP, 08 (2016), 061, 55 pp., arXiv: 1604.02346 | DOI | MR
[78] D. Bombardelli, A. Cavaglià, R. Conti, R. Tateo, “Exploring the spectrum of planar AdS$_{4}$/CFT$_{3}$ at finite coupling”, JHEP, 04 (2018), 117, 40 pp., arXiv: 1803.04748 | DOI | MR
[79] C. Marboe, D. Volin, “Quantum spectral curve as a tool for a perturbative quantum field theory”, Nucl. Phys. B, 899 (2015), 810–847, arXiv: 1411.4758 | DOI | MR
[80] L. Anselmetti, D. Bombardelli, A. Cavaglià, R. Tateo, “12 loops and triple wrapping in ABJM theory from integrability”, JHEP, 10 (2015), 117, 32 pp., arXiv: 1506.09089 | DOI | MR
[81] R. N. Lee, A. I. Onishchenko, “ABJM quantum spectral curve and Mellin transform”, JHEP, 05 (2018), 179, 28 pp., arXiv: 1712.00412 | DOI | MR
[82] M. A. Bandres, A. E. Lipstein, J. H. Schwarz, “Studies of the ABJM theory in a formulation with manifest SU(4) R-symmetry”, JHEP, 09 (2008), 027, 17 pp., arXiv: 0807.0880 | DOI | MR
[83] T. Klose, “Review of AdS/CFT integrability chapter IV.3: $N=6$ Chern–Simons and STRINGS on AdS$_4 \times \mathbb{CP}_3$”, Lett. Math. Phys., 99:1–3 (2012), 401–423, arXiv: 1012.3999 | DOI | MR
[84] G. Grignani, T. Harmark, M. Orselli, “The $SU(2) \times SU(2)$ sector in the string dual of $\mathscr N=6$ superconformal Chern–Simons theory”, Nucl. Phys. B, 810:1–2 (2009), 115–134, arXiv: 0806.4959 | DOI | MR
[85] A. V. Kotikov, L. N. Lipatov, “DGLAP and BFKL equations in the $N=4$ supersymmetric gauge theory”, Nucl. Phys. B, 661:1–2 (2003), 19–61, arXiv: ; Erratum, 685:1–2 (2004), 405–407 hep-ph/0208220 | DOI | DOI
[86] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, V. N. Velizhanin, “Three loop universal anomalous dimension of the Wilson operators in $\mathcal N=4$ SUSY Yang–Mills model”, Phys. Lett. B, 595:1–4 (2004), 521–529, arXiv: ; Erratum, Phys. Lett. B, 632:5–6 (2006), 754–756 hep-th/0404092 | DOI | MR | DOI
[87] M. Beccaria, G. Macorini, “QCD properties of twist operators in the $\mathscr N=6$ Chern–Simons theory”, JHEP, 06 (2009), 008, 21 pp., arXiv: 0904.2463 | DOI | MR
[88] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini, “On wrapping corrections to GKP-like operators”, JHEP, 03 (2011), 001, 37 pp., arXiv: 1012.2054 | DOI
[89] J. Ablinger, J. Blümlein, C. Schneider, “Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms”, J. Math. Phys., 54:8 (2013), 082301, 74 pp., arXiv: 1302.0378 | DOI | MR
[90] J. Ablinger, J. Blümlein, C. Schneider, “Harmonic sums and polylogarithms generated by cyclotomic polynomials”, J. Math. Phys., 52:10 (2011), 102301, 52 pp., arXiv: 1105.6063 | DOI | MR
[91] A. B. Zamolodchikov, “‘Fishing-net’ diagrams as a completely integrable system”, Phys. Lett. B, 97:1 (1980), 63–66 | DOI | MR
[92] D. Chicherin, S. Derkachov, A. P. Isaev, “Conformal group: R-matrix and star-triangle relation”, JHEP, 04 (2013), 020, 49 pp., arXiv: 1206.4150 | DOI | MR
[93] Ö. Gürdoǧan, V. Kazakov, “New integrable 4D quantum field theories from strongly deformed planar $\mathcal N=4$ supersymmetric Yang–Mills theory”, Phys. Rev. Lett., 117:20 (2016), 201602, 6 pp., arXiv: ; Addendum, 117:25, 259903 1512.06704 | DOI
[94] J. Caetano, O. Gürdoǧan, V. Kazakov, Chiral limit of $\mathcal N=4$ SYM and ABJM and integrable Feynman graphs, arXiv: 1612.05895
[95] D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, D.-l. Zhong, “Yangian symmetry for bi-scalar loop amplitudes”, JHEP, 05 (2018), 003, 39 pp., arXiv: 1704.01967 | DOI | MR
[96] B. Basso, L. J. Dixon, “Gluing ladder Feynman diagrams into fishnets”, Phys. Rev. Lett., 119:7 (2017), 071601, 6 pp., arXiv: 1705.03545 | DOI | MR
[97] N. Gromov, V. Kazakov, G. Korchemsky, S. Negro, G. Sizov, “Integrability of conformal fishnet theory”, JHEP, 01 (2018), 095, 75 pp., arXiv: 1706.04167 | DOI | MR
[98] D. Chicherin, V. Kazakov, F. Loebbert, D. Müller, D.-l. Zhong, “Yangian symmetry for fishnet Feynman graphs”, Phys. Rev. D, 96:12 (2017), 121901, 6 pp., arXiv: 1708.00007 | DOI
[99] D. Grabner, N. Gromov, V. Kazakov, G. Korchemsky, “Strongly $\gamma$-deformed $\mathcal N=4$ SYM as an integrable CFT”, Phys. Rev. Lett., 120:11 (2018), 111601, 6 pp., arXiv: 1711.04786 | DOI
[100] V. Kazakov, E. Olivucci, “Bi-scalar integrable CFT at any dimension”, Phys. Rev. Lett., 121:13 (2018), 131601, 6 pp., arXiv: 1801.09844 | DOI