Toward an~analytic perturbative solution for the~ABJM quantum spectral curve
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 292-308
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We recently showed how nonhomogeneous second-order difference equations that appear in describing the ABJM quantum spectral curve can be solved using a Mellin space technique. In particular, we provided explicit results for anomalous dimensions of twist-$1$ operators in the $sl(2)$ sector at arbitrary spin values up to the four-loop order. We showed that the obtained results can be expressed in terms of harmonic sums with additional factors in the form of a fourth root of unity, and the maximum transcendentality principle therefore holds. Here, we show that the same result can also be obtained by directly solving the mentioned difference equations in the space of the spectral parameter $u$. The solution involves new highly nontrivial identities between hypergeometric functions, which can have various applications. We expect that this method can be generalized both to higher loop orders and to other theories, such as the $\mathcal N=4$ supersymmetric Yang–Mills theory.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
quantum spectral curve, ABJM model, Baxter equation.
Mots-clés : spin chain, anomalous dimension
                    
                  
                
                
                Mots-clés : spin chain, anomalous dimension
@article{TMF_2019_198_2_a6,
     author = {R. N. Lee and A. I. Onischenko},
     title = {Toward an~analytic perturbative solution for {the~ABJM} quantum spectral curve},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {292--308},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a6/}
}
                      
                      
                    TY - JOUR AU - R. N. Lee AU - A. I. Onischenko TI - Toward an~analytic perturbative solution for the~ABJM quantum spectral curve JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 292 EP - 308 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a6/ LA - ru ID - TMF_2019_198_2_a6 ER -
R. N. Lee; A. I. Onischenko. Toward an~analytic perturbative solution for the~ABJM quantum spectral curve. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 292-308. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a6/
