Traces and supertraces on the symplectic reflection algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 284-291
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The symplectic reflection algebra $H_{1,\nu}(G)$ has a $T(G)$-dimensional space of traces, and if it is regarded as a superalgebra with a natural parity, then it has an $S(G)$-dimensional space of supertraces. The values of $T(G)$ and $S(G)$ depend on the symplectic reflection group $G$ and are independent of the parameter $\nu$. We present values of $T(G)$ and $S(G)$ for the groups generated by the root systems and for the groups $G=\Gamma\wr S_N$, where $\Gamma$ is a finite subgroup of $Sp(2,\mathbb C)$.
Keywords: symplectic reflection algebra, Cherednik algebra, trace
Mots-clés : supertrace.
@article{TMF_2019_198_2_a5,
     author = {S. E. Konstein and I. V. Tyutin},
     title = {Traces and supertraces on the~symplectic reflection algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--291},
     year = {2019},
     volume = {198},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/}
}
TY  - JOUR
AU  - S. E. Konstein
AU  - I. V. Tyutin
TI  - Traces and supertraces on the symplectic reflection algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 284
EP  - 291
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/
LA  - ru
ID  - TMF_2019_198_2_a5
ER  - 
%0 Journal Article
%A S. E. Konstein
%A I. V. Tyutin
%T Traces and supertraces on the symplectic reflection algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 284-291
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/
%G ru
%F TMF_2019_198_2_a5
S. E. Konstein; I. V. Tyutin. Traces and supertraces on the symplectic reflection algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 284-291. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/

[1] S. E. Konstein, I. V. Tyutin, “The number of independent traces and supertraces on symplectic reflection algebras”, J. Nonlinear Math. Phys., 21:3 (2014), 308–335, arXiv: 1308.3190 | DOI | MR

[2] R. M. Guralnick, J. Saxl, “Generation of finite almost simple groups by conjugates”, J. Algebra, 268:2 (2003), 519–571 | DOI | MR

[3] C. W. Huffman, D. Wales, “Linear groups containing an element with an eigenspace of codimension two”, Proceedings of the Conference on Finite Groups (University of Utah, Park City, Utah, 10–13 February, 1975), eds. W. R. Scott, F. Gross, Academic Press, New York, 1976, 425–429 | DOI | MR

[4] K. A. Brown, I. Gordon, “Poisson orders, symplectic reflection algebras and representation theory”, J. Reine Angew. Math., 2003:559 (2003), 193–216 | DOI | MR

[5] I. G. Gordon, 2005 ; I. G. Gordon, Trends in Representation Theory of Algebras and Related Topics, EMS Series of Congress Reports, eds. A. Skowroński, Eur. Math. Soc., Zürich, 2008, 285–347 http://www.maths.ed.ac.uk/<nobr>$\sim$</nobr>igordon/BMC.pdf | MR

[6] S. E. Konstein, R. Stekolshchik, “Klein operator and the number of traces and supertraces on the superalgebra of observables of rational Calogero model based on the root system”, J. Nonlinear Math. Phys., 20:2 (2013), 295–308, arXiv: 1212.0508 | DOI | MR

[7] P. Etingof, V. Ginzburg, “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism”, Invent. Math., 147:2 (2002), 243–348 | DOI | MR

[8] D. S. Passman, Infinite Crossed Products, Pure and Applied Mathematics, 135, Academic Press, Boston, MA, 1989 | MR

[9] P. Deligne, J. W. Morgan, “Notes on supersymmetry (following Joseph Bernstein)”, Quantum Fields and Strings: A Course For Mathematicians (Institute for Advanced Study, Princeton, NJ, 1996–1997), v. 1, eds. P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, E. Witten, AMS, Providence, RI, 1999, 41–97 | MR

[10] R. Stekolshchik, Notes on Coxeter Transformations and the McKay Correspondence, Springer Monographs in Mathematics, Springer, Berlin, 2008 | MR

[11] P. Etingof, S. Montarani, “Finite dimensional representations of symplectic reflection algebras associated to wreath products”, Represent. Theory, 9 (2005), 457–467 | DOI | MR

[12] S. E. Konstein, I. V. Tyutin, “The number of independent traces and supertraces on the symplectic reflection algebra $H_{1,\eta}(\Gamma\wr S_N)$”, J. Nonlinear Math. Phys., 25:3 (2018), 485–496, arXiv: 1711.09950 | DOI | MR

[13] S. E. Konstein, M. A. Vasiliev, “Supertraces on the algebras of observables of the rational Calogero model with harmonic potential”, J. Math. Phys., 37:6 (1996), 2872–2891, arXiv: hep-th/9512038 | DOI | MR