Traces and supertraces on the~symplectic reflection algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 284-291

Voir la notice de l'article provenant de la source Math-Net.Ru

The symplectic reflection algebra $H_{1,\nu}(G)$ has a $T(G)$-dimensional space of traces, and if it is regarded as a superalgebra with a natural parity, then it has an $S(G)$-dimensional space of supertraces. The values of $T(G)$ and $S(G)$ depend on the symplectic reflection group $G$ and are independent of the parameter $\nu$. We present values of $T(G)$ and $S(G)$ for the groups generated by the root systems and for the groups $G=\Gamma\wr S_N$, where $\Gamma$ is a finite subgroup of $Sp(2,\mathbb C)$.
Keywords: symplectic reflection algebra, Cherednik algebra, trace
Mots-clés : supertrace.
@article{TMF_2019_198_2_a5,
     author = {S. E. Konstein and I. V. Tyutin},
     title = {Traces and supertraces on the~symplectic reflection algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {284--291},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/}
}
TY  - JOUR
AU  - S. E. Konstein
AU  - I. V. Tyutin
TI  - Traces and supertraces on the~symplectic reflection algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 284
EP  - 291
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/
LA  - ru
ID  - TMF_2019_198_2_a5
ER  - 
%0 Journal Article
%A S. E. Konstein
%A I. V. Tyutin
%T Traces and supertraces on the~symplectic reflection algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 284-291
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/
%G ru
%F TMF_2019_198_2_a5
S. E. Konstein; I. V. Tyutin. Traces and supertraces on the~symplectic reflection algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 284-291. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a5/