Orthogonal and symplectic Yangians and Lie algebra representations
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 273-283

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental $R$-matrix with $so(n)$ or $sp(2m)$ symmetry. We investigate the conditions on the first- and second-order evaluations as restrictions imposed on the representation weights.
Keywords: orthogonal and symplectic Yangian, first-order evaluation, second-order evaluation, Lie algebra representation.
@article{TMF_2019_198_2_a4,
     author = {D. R. Karakhanyan and R. Kirshner},
     title = {Orthogonal and symplectic {Yangians} and {Lie} algebra representations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {273--283},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/}
}
TY  - JOUR
AU  - D. R. Karakhanyan
AU  - R. Kirshner
TI  - Orthogonal and symplectic Yangians and Lie algebra representations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 273
EP  - 283
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/
LA  - ru
ID  - TMF_2019_198_2_a4
ER  - 
%0 Journal Article
%A D. R. Karakhanyan
%A R. Kirshner
%T Orthogonal and symplectic Yangians and Lie algebra representations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 273-283
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/
%G ru
%F TMF_2019_198_2_a4
D. R. Karakhanyan; R. Kirshner. Orthogonal and symplectic Yangians and Lie algebra representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 273-283. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/