Orthogonal and symplectic Yangians and Lie algebra representations
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 273-283
Voir la notice de l'article provenant de la source Math-Net.Ru
Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental $R$-matrix with $so(n)$ or $sp(2m)$ symmetry. We investigate the conditions on the first- and second-order evaluations as restrictions imposed on the representation weights.
Keywords:
orthogonal and symplectic Yangian, first-order evaluation, second-order evaluation, Lie algebra representation.
@article{TMF_2019_198_2_a4,
author = {D. R. Karakhanyan and R. Kirshner},
title = {Orthogonal and symplectic {Yangians} and {Lie} algebra representations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {273--283},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/}
}
TY - JOUR AU - D. R. Karakhanyan AU - R. Kirshner TI - Orthogonal and symplectic Yangians and Lie algebra representations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 273 EP - 283 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/ LA - ru ID - TMF_2019_198_2_a4 ER -
D. R. Karakhanyan; R. Kirshner. Orthogonal and symplectic Yangians and Lie algebra representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 273-283. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/