@article{TMF_2019_198_2_a4,
author = {D. R. Karakhanyan and R. Kirshner},
title = {Orthogonal and symplectic {Yangians} and {Lie} algebra representations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {273--283},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/}
}
TY - JOUR AU - D. R. Karakhanyan AU - R. Kirshner TI - Orthogonal and symplectic Yangians and Lie algebra representations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 273 EP - 283 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/ LA - ru ID - TMF_2019_198_2_a4 ER -
D. R. Karakhanyan; R. Kirshner. Orthogonal and symplectic Yangians and Lie algebra representations. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 273-283. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a4/
[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR
[2] V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, “Lokalnye gamiltoniany dlya integriruemykh kvantovykh modelei na reshetke”, TMF, 57:2 (1983), 163–181 | DOI | MR
[3] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method recent developments”, Integrable Quantum Field Theories (Tvärminne, Finland, 23–27 March, 1981), Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin–Heidelberg, 1982, 61–119 | DOI | MR
[4] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches Summer School, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[5] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR
[6] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | MR | Zbl
[7] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$ matrices in two-dimensions as the exact solutions of certain relativistic quantum field models”, Ann. Phys., 120:2 (1979), 253–291 | DOI | MR
[8] B. Berg, M. Karowski, P. Weisz, V. Kurak, “Factorized $U(n)$ symmetric $S$-matrices in two-dimensions”, Nucl. Phys. B, 134:1 (1978), 125–132 | DOI | MR
[9] N. Yu. Reshetikhin, “Gamiltonovy struktury dlya integriruemykh modelei teorii polya. II. Modeli s $O(n)$- i $Sp(2k)$-simmetriei na odnomernoi reshetke”, TMF, 63:2 (1985), 197–207 | DOI | MR
[10] A. P. Isaev, Quantum groups and Yang–Baxter equations, preprint MPI 2004-132, Max Planck Institute for Mathematics, Bonn, 2004
[11] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B,C$ and $D$”, Commun. Math. Phys., 361:3 (2018), 827–872, arXiv: 1705.08166 | DOI
[12] N. Guay, V. Regelskis, C. Wendlandt, “Equivalences between three presentations of orthogonal and symplectic Yangians”, Lett. Math. Phys., 2018, 1–53, arXiv: 1706.05176 | DOI
[13] D. R. Karakhanyan, R. Kirshner, “Kvadratichnoe razreshenie ortogonalnykh i simplekticheskikh yangianov”, TMF, 192:2 (2017), 250–258 ; D. Karakhanyan, R. Kirschner, “Orthogonal and symplectic Yangians-linear and quadratic evaluations”, Nucl. Phys. B, 933 (2018), arXiv: 1712.06849 | DOI | DOI | MR | DOI | MR
[14] A. P. Isaev, D. Karakhanyan, R. Kirschner, “Orthogonal and symplectic Yangians and Yang–Baxter $R$ operators”, Nucl. Phys. B, 904 (2016), 124–147, arXiv: 1511.06152 | DOI | MR
[15] D. Arnaudon, A. Molev, E. Ragoucy, “On the $R$-matrix realization of Yangians and their representations”, Ann. Henri Poincaré, 7:7–8 (2006), 1269–1325, arXiv: math/0511481 | DOI
[16] R. Shankar, E. Witten, “The $S$ matrix of the kinks of the $(\bar\psi\psi)^2$ model”, Nucl. Phys. B, 141:4 (1978), 349–363 | DOI
[17] D. Chicherin, S. Derkachov, A. P. Isaev, “Conformal group: R-matrix and star-triangle relation”, JHEP, 04 (2013), 020, 50 pp., arXiv: 1206.4150 | DOI