@article{TMF_2019_198_2_a3,
author = {I. Ch.-H. Ip},
title = {Cluster realization of positive representations of a~split real quantum {Borel} subalgebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {246--272},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a3/}
}
TY - JOUR AU - I. Ch.-H. Ip TI - Cluster realization of positive representations of a split real quantum Borel subalgebra JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 246 EP - 272 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a3/ LA - ru ID - TMF_2019_198_2_a3 ER -
I. Ch.-H. Ip. Cluster realization of positive representations of a split real quantum Borel subalgebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 246-272. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a3/
[1] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR. Ser. fiz., 283:5 (1985), 1060–1064 | MR | Zbl
[2] M. Jimbo, “A $q$-difference analogue of $\mathcal U(\mathfrak g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR
[3] I. B. Frenkel, I. C. H. Ip, “Positive representations of split real quantum groups and future perspectives”, Int. Math. Res. Notices, 2014:8 (2014), 2126–2164 | DOI | MR
[4] L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR
[5] L. D. Faddeev, “Modular double of quantum group”, Conférence Moshé Flato 1999 (Dijon, France, 5–8 September, 1999), v. I, Mathematical Physics Studies, 21, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 149–156, arXiv: math/9912078 | MR
[6] A. G. Bytsko, K. Teschner, “R-operator, co-product and Haar-measure for the modular double of $\mathcal U_q(\mathfrak{sl}(2,\mathbb R))$”, Commun. Math. Phys., 240:1–2 (2003), 171–196, arXiv: math/0208191 | DOI | MR
[7] B. Ponsot, J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, arXiv: hep-th/9911110
[8] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $\mathcal U_q(\mathfrak{sl}(2,\mathbb R))$”, Commun. Math. Phys., 224:3 (2001), 613–655, arXiv: math/0007097 | DOI | MR
[9] I. C. H. Ip, Positive representations of split real simply-laced quantum groups, arXiv: 1203.2018
[10] I. C. H. Ip, “Positive representations of non-simply-laced split real quantum groups”, J. Algebra, 425 (2015), 245–276 | DOI | MR
[11] I. C. H. Ip, “Representation of the quantum plane, its quantum double, and harmonic analysis on $GL_q^+(2,\mathbb R)$”, Selecta Math. (N. S.), 19:4 (2013), 987–1082 | DOI | MR
[12] K. Schmüdgen, “Operator representations of $\mathbb R_q^2$”, Publ. Res. Inst. Math. Sci., 28:6 (1992), 1029–1061 | DOI | MR
[13] G. Schrader, A. Shapiro, Continuous tensor categories from quantum groups I: algebraic aspects, arXiv: 1708.08107
[14] I. C. H. Ip, “Cluster realization of $\mathcal U_q(\mathfrak g)$ and factorizations of the universal $R$-matrix”, Selecta Math. (N. S.), 24:5 (2018), 4461–4553, arXiv: 1612.05641 | DOI | MR
[15] G. Schrader, A. Shapiro, A cluster realization of $\mathcal U_q(\mathfrak{sl}_n)$ from quantum character varieties, arXiv: 1607.00271
[16] I. C. H. Ip, “On tensor product of positive representations of split real quantum Borel algebra $\mathcal U_{q\widetilde t}(\mathfrak b_{\mathbb R})$”, Trans. Amer. Math. Soc., 370:6 (2018), 4177–4200 | DOI | MR
[17] I. Frenkel, H. Kim, “Quantum Teichmüller space from quantum plane”, Duke Math. J., 161:2 (2012), 305–366 | DOI | MR
[18] N. Reshetikhin, V. Turaev, “Ribbon graphs and their invariants derived from quantum groups”, Commun. Math. Phys., 127:1 (1990), 1–26 | DOI | MR
[19] N. Reshetikhin, V. G. Turaev, “Invariants of 3-manifolds via link polynomials and quantum groups”, Invent. Math., 103:1 (1991), 547–597 | DOI | MR
[20] V. V. Fock, A. B. Goncharov, “Cluster $\mathcal X$-varieties, amalgamation, and Poisson–Lie groups”, Algebraic Geometry and Number Theory, Progress in Mathematics, 253, ed. V. Ginzburg, Birkhäuser, Boston, MA, 2006, 27–68 | DOI | MR | Zbl
[21] I. Le, An approach to cluster structures on moduli of local systems for general groups, arXiv: 1606.00961
[22] R. M. Kashaev, “Heisenberg double and pentagon relation”, Algebra i analiz, 8:4 (1996), 63–74 | MR | Zbl
[23] L. D. Faddeev, R. M. Kashaev, “Quantum dilogarithm”, Modern Phys. Lett. A, 9:5 (1994), 427–434, arXiv: hep-th/9310070 | DOI | MR
[24] A. Berenstein, S. Fomin, A. Zelevinsky, “Cluster algebras III. Upper bounds and double Bruhat cells”, Duke Math. J., 126:1 (2005), 1–52 | DOI | MR