Cluster realization of positive representations of a~split real quantum Borel subalgebra
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 246-272
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In our previous work, we studied positive representations of split real quantum groups $\mathcal U_{q\tilde q}(\mathfrak g_{\mathbb R})$ restricted to their Borel part and showed that they are closed under taking tensor products. But the tensor product decomposition was only constructed abstractly using the GNS representation of a $C^*$-algebraic version of the Drinfeld–Jimbo quantum groups. Here, using the recently discovered cluster realization of quantum groups, we write the decomposition explicitly by realizing it as a sequence of cluster mutations in the corresponding quiver diagram representing the tensor product.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
positive representation, split real quantum group, modular double, quantum cluster algebra, tensor category.
                    
                  
                
                
                @article{TMF_2019_198_2_a3,
     author = {I. Ch.-H. Ip},
     title = {Cluster realization of positive representations of a~split real quantum {Borel} subalgebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--272},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a3/}
}
                      
                      
                    TY - JOUR AU - I. Ch.-H. Ip TI - Cluster realization of positive representations of a~split real quantum Borel subalgebra JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 246 EP - 272 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a3/ LA - ru ID - TMF_2019_198_2_a3 ER -
I. Ch.-H. Ip. Cluster realization of positive representations of a~split real quantum Borel subalgebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 246-272. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a3/
