Strict versions of integrable hierarchies in pseudodifference operators and the~related Cauchy problems
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 225-245
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the algebra $Ps\Delta$ of pseudodifference operators, we consider two deformations of the Lie subalgebra spanned by positive powers of an invertible constant first-degree pseudodifference operator $\Lambda_0$. The first deformation is by the group in $Ps\Delta$ corresponding to the Lie subalgebra $Ps\Delta_{0}$ of elements of negative degree, and the second is by the group corresponding to the Lie subalgebra $Ps\Delta_{\le0}$ of elements of degree zero or lower. We require that the evolution equations of both deformations be certain compatible Lax equations that are determined by choosing a Lie subalgebra depending on $\Lambda_0$ that respectively complements the Lie subalgebra $Ps\Delta_{0}$ or $Ps\Delta_{\le0}$. This yields two integrable hierarchies associated with $\Lambda_0$, where the hierarchy of the wider deformation is called the strict version of the first because of the form of the Lax equations. For $\Lambda_0$ equal to the matrix of the shift operator, the hierarchy corresponding to the simplest deformation is called the discrete KP hierarchy. We show that the two hierarchies have an equivalent zero-curvature form and conclude by discussing the solvability of the related Cauchy problems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
pseudodifference operator, zero-curvature form, Cauchy problem.
Mots-clés : Lax equation
                    
                  
                
                
                Mots-clés : Lax equation
@article{TMF_2019_198_2_a2,
     author = {G. F. Helminck and V. A. Poberezhny and S. V. Polenkova},
     title = {Strict versions of integrable hierarchies in pseudodifference operators and the~related {Cauchy} problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--245},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/}
}
                      
                      
                    TY - JOUR AU - G. F. Helminck AU - V. A. Poberezhny AU - S. V. Polenkova TI - Strict versions of integrable hierarchies in pseudodifference operators and the~related Cauchy problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 225 EP - 245 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/ LA - ru ID - TMF_2019_198_2_a2 ER -
%0 Journal Article %A G. F. Helminck %A V. A. Poberezhny %A S. V. Polenkova %T Strict versions of integrable hierarchies in pseudodifference operators and the~related Cauchy problems %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 225-245 %V 198 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/ %G ru %F TMF_2019_198_2_a2
G. F. Helminck; V. A. Poberezhny; S. V. Polenkova. Strict versions of integrable hierarchies in pseudodifference operators and the~related Cauchy problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 225-245. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/
