Mots-clés : Lax equation
@article{TMF_2019_198_2_a2,
author = {G. F. Helminck and V. A. Poberezhny and S. V. Polenkova},
title = {Strict versions of integrable hierarchies in pseudodifference operators and the~related {Cauchy} problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {225--245},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/}
}
TY - JOUR AU - G. F. Helminck AU - V. A. Poberezhny AU - S. V. Polenkova TI - Strict versions of integrable hierarchies in pseudodifference operators and the related Cauchy problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 225 EP - 245 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/ LA - ru ID - TMF_2019_198_2_a2 ER -
%0 Journal Article %A G. F. Helminck %A V. A. Poberezhny %A S. V. Polenkova %T Strict versions of integrable hierarchies in pseudodifference operators and the related Cauchy problems %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 225-245 %V 198 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/ %G ru %F TMF_2019_198_2_a2
G. F. Helminck; V. A. Poberezhny; S. V. Polenkova. Strict versions of integrable hierarchies in pseudodifference operators and the related Cauchy problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 225-245. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a2/
[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 41–119 | MR
[2] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Étud. Sci. Publ. Math., 61 (1985), 5–65 | MR | MR | Zbl
[3] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | MR | Zbl
[4] M. Toda, Nonlinear Waves and Solitons, Mathematics and Its Applications (Japanese Series), 5, Kluwer, Dordrecht; KTK Scientific Publishers, Tokyo, 1989 | MR
[5] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam–New York, 1984, 1–95 | MR
[6] T. Takebe, “Toda lattice hierarchy and conservation laws”, Commun. Math. Phys., 129:2 (1990), 281–318 | DOI | MR
[7] M. Adler, P. van Moerbeke, “Group factorization, moment matrices, and Toda lattices”, Internat. Math. Res. Notices, 1997:12 (1997), 555–572 | DOI | MR
[8] L. Haine, P. Iliev, “Commutative rings of difference operators and an adelic flag manifold”, Internat. Math. Res. Notices, 2000:6 (2000), 281–323 | DOI | MR
[9] D. Olive, N. Turok, “Algebraic structure of Toda systems”, Nucl. Phys. B, 220:4 (1983), 491–507 | DOI | MR
[10] D. Olive, N. Turok, “Local conserved densities and zero-curvature conditions for Toda lattice field theories”, Nucl. Phys. B, 257:2 (1985), 277–301 | DOI | MR
[11] D. Olive, N. Turok, “The Toda lattice field theory hierarchies and zero-curvature conditions in Kac–Moody algebras”, Nucl. Phys. B, 265:3 (1986), 469–484 | DOI | MR
[12] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer, Berlin | DOI | MR
[13] M. Adler, P. van Moerbeke, “Vertex operator solutions to the discrete KP-hierarchy”, Commun. Math. Phys., 203:1 (1999), 185–210 | DOI | MR
[14] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR
[15] G. Wilson, “Commuting flows and conservation laws for Lax equations”, Math. Proc. Cambridge Philos. Soc., 86:1 (1979), 131–143 | DOI | MR
[16] M. Adler, E. Horozov, P. van Moerbeke, “The solution to the $q$-KdV equation”, Phys. Lett. A, 242:3 (1998), 139–151 | DOI | MR
[17] R. R. Gontsov, V. A. Poberezhnyi, G. F. Khelmink, “Deformatsii sistem lineinykh differentsialnykh uravnenii”, UMN, 66:1(397) (2011), 65–110 | DOI | DOI | MR | Zbl
[18] G. F. Helminck, J. W. van de Leur, “Darboux transformations for the KP hierarchy in the Segal–Wilson setting”, Canad. J. Math., 53:2 (2001), 278–309 | DOI | MR
[19] G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “A geometric construction of solutions of the strict $\text{dKP}(\Lambda_0$) hierarchy”, J. Geom. Phys., 131 (2018), 189–203 | DOI | MR