Pentagon identities arising in supersymmetric gauge theory computations
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 215-224
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The partition functions of three-dimensional $\mathcal N =2$ supersymmetric gauge theories on different manifolds can be expressed as $q$-hypergeometric integrals. Comparing the partition functions of three-dimensional mirror dual theories, we derive complicated integral identities. In some cases, these identities can be written in the form of pentagon relations. Such identities are often interpreted as the Pachner $3$-$2$ move for triangulated manifolds using the so-called $3d$$3d$ correspondence. From the physics perspective, another important application of pentagon identities is that they can be used to construct new solutions of the quantum Yang–Baxter equation.
Keywords: pentagon identity, exact results in supersymmetric gauge theories, hypergeometric integral.
@article{TMF_2019_198_2_a1,
     author = {D. N. Bozkurt and I. B. Gahramanov},
     title = {Pentagon identities arising in supersymmetric gauge theory computations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {215--224},
     year = {2019},
     volume = {198},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a1/}
}
TY  - JOUR
AU  - D. N. Bozkurt
AU  - I. B. Gahramanov
TI  - Pentagon identities arising in supersymmetric gauge theory computations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 215
EP  - 224
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a1/
LA  - ru
ID  - TMF_2019_198_2_a1
ER  - 
%0 Journal Article
%A D. N. Bozkurt
%A I. B. Gahramanov
%T Pentagon identities arising in supersymmetric gauge theory computations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 215-224
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a1/
%G ru
%F TMF_2019_198_2_a1
D. N. Bozkurt; I. B. Gahramanov. Pentagon identities arising in supersymmetric gauge theory computations. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 215-224. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a1/

[1] J. Allman, R. Rimányi, Quantum dilogarithm identities for the square product of A-type Dynkin quivers, arXiv: 1702.04766

[2] A. Dimakis, F. Müller-Hoissen, “Simplex and polygon equations”, SIGMA, 11 (2015), 042, 49 pp., arXiv: 1409.7855 | DOI | MR

[3] I. Gahramanov, H. Rosengren, “Integral pentagon relations for 3d superconformal indices”, String-Math 2014 (Edmonton, Canada, June 9–13, 2014), Proceedings of Symposia in Pure Mathematics, 93, eds. V. Bouchard, C. Doran, S. Méndez-Diez, C. Quigley, AMS, Providence, RI, 2016, 165–173, arXiv: 1412.2926 | DOI | MR

[4] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson loops”, Commun. Math. Phys., 313 (2012), 71–129, arXiv: 0712.2824 | DOI | MR

[5] R. Kashaev, F. Luo, G. Vartanov, “A TQFT of Turaev–Viro type on shaped triangulations”, Ann. Henri Poincaré, 17:5 (2016), 1109–1143, arXiv: 1210.8393 | DOI | MR

[6] T. Dimofte, D. Gaiotto, S. Gukov, “Gauge theories labelled by three-manifolds”, Commun. Math. Phys., 325:2 (2014), 367–419, arXiv: 1108.4389 | DOI

[7] T. Dimofte, D. Gaiotto, S. Gukov, “3-Manifolds and $3d$ indices”, Adv. Theor. Math. Phys., 17:5 (2013), 975–1076, arXiv: 1112.5179 | DOI | MR

[8] I. Gahramanov, H. Rosengren, “A new pentagon identity for the tetrahedron index”, JHEP, 11 (2013), 128, arXiv: 1309.2195 | DOI

[9] I. Gahramanov, H. Rosengren, “Basic hypergeometry of supersymmetric dualities”, Nucl. Phys. B, 913 (2016), 747–768, arXiv: 1606.08185 | DOI

[10] Y. Imamura, D. Yokoyama, “$S^3/Z_n$ partition function and dualities”, JHEP, 11 (2012), 122, arXiv: 1208.1404 | MR

[11] R. M. Kashaev, “Beta-pentagonalnye uravneniya”, TMF, 181:1 (2014), 73–85, arXiv: 1403.1298 | DOI | DOI | MR

[12] U. von Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57:1 (1987), 69–86, Springer, Hamburg | DOI | MR

[13] U. Pachner, “P. L. homeomorphic manifolds are equivalent by elementary shellings”, Eur. J. Combin., 12:2 (1991), 129–145 | DOI | MR

[14] D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, “O trekhmernom obobschenii sootvetstviya Aldaya–Gaiotto–Tachikavy”, TMF, 172:1 (2012), 73–99, arXiv: 1104.2589 | DOI | DOI | MR

[15] T. Dimofte, “3d superconformal theories from three-manifolds”, New Dualities of Supersymmetric Gauge Theories, ed. J. Teschner, Springer, Cham, 2016, 339–373, arXiv: 1412.7129 | DOI

[16] Y. Terashima, M. Yamazaki, “Semiclassical analysis of the $3d/3d$ relation”, Phys. Rev. D, 88:2 (2013), 026011, arXiv: 1106.3066 | DOI

[17] L. F. Alday, D. Gaiotto, Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI

[18] L. D. Faddeev, R. M. Kashaev, “Quantum dilogarithm”, Modern Phys. Lett. A, 9:5 (1994), 427–434, arXiv: hep-th/9310070 | DOI

[19] L. D. Faddeev, “Pentagon Volkova dlya modulyarnogo kvantovogo dilogarifma”, Funkts. analiz i ego pril., 45:4 (2011), 65–71, arXiv: 1201.6464 | DOI | DOI | MR | Zbl

[20] A. Yu. Volkov, “Beyond the ‘pentagon identity’”, Lett. Math. Phys., 39:4 (1997), 393–397, arXiv: q-alg/9603003 | DOI | MR

[21] A. Yu. Volkov, “Pentagon identity revisited I”, Int. Math. Res. Notices, 2012:20 (2012), 4619–4624, arXiv: 1104.2267 | DOI | MR

[22] R. M. Kashaev, S. M. Sergeev, “On pentagon, ten term, and tetrahedron relations”, Commun. Math. Phys., 195:2 (1998), 309–319, arXiv: q-alg/9607032 | DOI | MR

[23] R. M. Kashaev, “On the spectrum of Dehn twists in quantum Teichmüller theory”, Physics and Combinatorics (Graduate School of Mathematics, Nagoya University, 21–26 August, 2000), eds. A. N. Kirillov, N. Liskova, World Sci., Singapore, 2001, 63–81, arXiv: math/0008148 | DOI | MR

[24] N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR

[25] K. Hosomichi, “The localization principle in SUSY gauge theories”, Prog. Theor. Exp. Phys., 2015:11 (2015), 11B101, 20 pp., arXiv: 1502.04543 | MR

[26] B. Willett, “Localization on three-dimensional manifolds”, J. Phys. A: Math. Theor., 50:44 (2017), 443006, arXiv: 1608.02958 | DOI

[27] S. Cremonesi, “Localization and supersymmetry on curved space”, PoS(Modave2013), 201 (2013), 002, 39 pp. | DOI

[28] K. A. Intriligator, N. Seiberg, “Mirror symmetry in three-dimensional gauge theories”, Phys. Lett. B, 387:3 (1996), 513–519, arXiv: hep-th/9607207 | DOI

[29] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, M. Strassler, “Aspects of ${N=2}$ supersymmetric gauge theories in three-dimensions”, Nucl. Phys. B, 499:1–2 (1997), 67–99, arXiv: hep-th/9703110 | DOI

[30] A. Kapustin, B. Willett, Generalized superconformal index for three dimensional field theories, arXiv: 1106.2484

[31] A. Kapustin, B. Willett, I. Yaakov, “Exact results for Wilson loops in superconformal Chern–Simons theories with matter”, JHEP, 03 (2010), 089, 29 pp., arXiv: 0909.4559 | DOI | MR

[32] N. Hama, K. Hosomichi, S. Lee, “Notes on SUSY gauge theories on three-sphere”, JHEP, 03 (2011), 127, 14 pp., arXiv: 1012.3512 | DOI | MR

[33] D. L. Jafferis, “The exact superconformal $R$-symmetry extremizes $Z$”, JHEP, 05 (2012), 159, 20 pp., arXiv: 1012.3210 | DOI | MR

[34] N. Hama, K. Hosomichi, S. Lee, “SUSY gauge theories on squashed three-spheres”, JHEP, 05 (2011), 014, arXiv: 1102.4716 | DOI | MR

[35] V. P. Spiridonov, G. S. Vartanov, “Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices”, Commun. Math. Phys., 325:2 (2014), 421–486, arXiv: 1107.5788 | DOI | MR

[36] I. Gahramanov, A. P. Kels, “The star-triangle relation, lens partition function, and hypergeometric sum/integrals”, JHEP, 02 (2017), 040, 40 pp., arXiv: 1610.09229 | DOI | MR

[37] I. Gahramanov, S. Jafarzade, Integrable lattice spin models from supersymmetric dualities, arXiv: 1712.09651

[38] C. Krattenthaler, V. Spiridonov, G. Vartanov, “Superconformal indices of three-dimensional theories related by mirror symmetry”, JHEP, 06 (2011), 008, 20 pp., arXiv: 1103.4075 | DOI | MR

[39] A. Tanaka, H. Mori, T. Morita, “Superconformal index on $\mathbb{RP}^2\times \mathbb{S}^1$ and mirror symmetry”, Phys. Rev. D, 91:10 (2015), 105023, 24 pp., arXiv: 1408.3371 | DOI

[40] A. Tanaka, H. Mori, T. Morita, “Abelian $3d$ mirror symmetry on $\mathbb{R}\mathbb{P}^2\times {\mathbb{S}^1}$ with $N_{f}=1$”, JHEP, 09 (2015), 154, 29 pp., arXiv: 1505.07539 | DOI

[41] H. Mori, A. Tanaka, “Varieties of Abelian mirror symmetry on $\mathbb{RP}^2\times\mathbb{S}^1$”, JHEP, 02 (2016), 088, 24 pp., arXiv: 1512.02835 | DOI

[42] V. Spiridonov, “Elliptic beta integrals and solvable models of statistical mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, eds. P. B. Acosta-Humánez, F. Finkel, N. Kamran, P. J. Olver, AMS, Providence, RI, 2012, 181–211, arXiv: 1011.3798 | DOI | MR

[43] S. Benvenuti, S. Pasquetti, “3d $\mathcal{N}=2$ mirror symmetry, pq-webs and monopole superpotentials”, JHEP, 08 (2016), 136, 43 pp., arXiv: 1605.02675 | DOI | MR

[44] K. Hikami, “Generalized volume conjecture and the $A$-polynomials: the Neumann–Zagier potential function as a classical limit of quantum invariant”, J. Geom. Phys., 57:9 (2007), 1895–1940, arXiv: math/0604094 | DOI | MR

[45] R. M. Kashaev, “The hyperbolic volume of knots from quantum dilogarithm”, Lett. Math. Phys., 39:3 (1997), 269–275 | DOI | MR

[46] D. Gang, N. Kim, S. Lee, “Holography of wrapped M5-branes and Chern–Simons theory”, Phys. Lett. B, 733 (2014), 316–319, arXiv: 1401.3595 | DOI

[47] V. V. Bazhanov, A. P. Kels, S. M. Sergeev, “Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs”, J. Phys. A, 49:46 (2016), 464001, arXiv: 1602.07076 | DOI | MR

[48] S. Jafarzade, Z. Nazari, “A new integrable Ising-type model from 2d $\mathcal{N}=(2,2)$ dualities”, arXiv: 1709.00070