Cluster Toda chains and Nekrasov functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 179-214
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the relation between cluster integrable systems and $q$-difference equations beyond the Painlevé case. We consider the class of hyperelliptic curves where the Newton polygons contain only four boundary points. We present the corresponding cluster integrable Toda systems and identify their discrete automorphisms with certain reductions of the Hirota difference equation. We also construct nonautonomous versions of these equations and find that their solutions are expressed in terms of five-dimensional Nekrasov functions with Chern–Simons contributions, while these equations in the autonomous case are solved in terms of Riemann theta functions.
Keywords: Supersymmetric gauge theories, cluster integrable systems, q-difference Painleve equation.
@article{TMF_2019_198_2_a0,
     author = {M. A. Bershtein and P. G. Gavrilenko and A. V. Marshakov},
     title = {Cluster {Toda} chains and {Nekrasov} functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--214},
     year = {2019},
     volume = {198},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/}
}
TY  - JOUR
AU  - M. A. Bershtein
AU  - P. G. Gavrilenko
AU  - A. V. Marshakov
TI  - Cluster Toda chains and Nekrasov functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 179
EP  - 214
VL  - 198
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/
LA  - ru
ID  - TMF_2019_198_2_a0
ER  - 
%0 Journal Article
%A M. A. Bershtein
%A P. G. Gavrilenko
%A A. V. Marshakov
%T Cluster Toda chains and Nekrasov functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 179-214
%V 198
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/
%G ru
%F TMF_2019_198_2_a0
M. A. Bershtein; P. G. Gavrilenko; A. V. Marshakov. Cluster Toda chains and Nekrasov functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 179-214. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/

[1] M. Bershtein, P. Gavrylenko, A. Marshakov, “Cluster integrable systems, $q$-Painlevé equations and their quantization”, JHEP, 02 (2018), 077, 33 pp., arXiv: 1711.02063 | DOI | MR

[2] A. B. Goncharov, R. Kenyon, “Dimers and cluster integrable systems”, Ann. Sci. École Norm. Supér., 46:5 (2013), 747–813, arXiv: 1107.5588 | DOI | MR

[3] V. Fock, A. Marshakov, “Loop groups, clusters, dimers and integrable systems”, Geometry and Quantization of Moduli Spaces, Advanced Courses in Mathematics – CRM Barcelona (ACMBIRK), eds. L. Álvarez Cónsul, J. E. Andersen, I. Mundet i Riera, Springer, Cham, 2016, 1–65, arXiv: 1401.1606 | DOI | MR

[4] O. Gamayun, N. Iorgov, O. Lisovyy, “Conformal field theory of Painlevé VI”, JHEP, 10 (2012), 38, 24 pp., arXiv: 1207.0787 | DOI | MR

[5] P. Gavrylenko, “Isomonodromic $\tau$-functions and $W_N$ conformal blocks”, JHEP, 09 (2015), 167, 23 pp., arXiv: 1505.00259 | DOI | MR

[6] H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Commun. Math. Phys., 220:1 (2001), 165–229 | DOI | MR

[7] S. Franco, A. Hanany, D. Vegh, B. Wecht, K. D. Kennaway, “Brane dimers and quiver gauge theories”, JHEP, 01 (2006), 096, 48 pp., arXiv: hep-th/0504110 | DOI | MR

[8] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, B. Wecht, “Gauge theories from toric geometry and brane tilings”, JHEP, 01 (2006), 128, 40 pp., arXiv: hep-th/0505211 | DOI | MR

[9] A. Brini, A. Tanzini, “Exact results for topological strings on resolved $Y^{p,q}$ singularities”, Commun. Math. Phys., 289:1 (2009), 205–252, arXiv: 0804.2598 | DOI | MR

[10] R. Eager, S. Franco, K. Schaeffer, “Dimer models and integrable systems”, JHEP, 06 (2012), 106, 24 pp., arXiv: 1107.1244 | DOI | MR

[11] A. Marshakov, “Lie groups, cluster variables and integrable systems”, J. Geom. Phys., 67 (2013), 16–36, arXiv: 1207.1869 | DOI | MR

[12] A. Iqbal, A. K. Kashani-Poor, “Instanton counting and Chern–Simons theory”, Adv. Theor. Math. Phys., 7:3 (2003), 457–497, arXiv: hep-th/0212279 | DOI | MR

[13] T. Eguchi, H. Kanno, “Topological strings and Nekrasov's formulas”, JHEP, 12 (2003), 006, 29 pp., arXiv: hep-th/0310235 | DOI

[14] Y. Tachikawa, “Five-dimensional Chern–Simons terms and Nekrasov's instanton counting”, JHEP, 02 (2004), 050, 13 pp., arXiv: hep-th/0401184 | DOI | MR

[15] L. Göttshe, H. Nakajima, K. Yoshioka, “$K$-theoretic Donaldson invariants via instanton counting”, Pure Appl. Math. Quart., 5:3 (2009), 1029–1111, arXiv: math/0611945 | DOI | MR

[16] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[17] M. Gekhtman, M. Shapiro, A. Vainshtein, “Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective”, Acta Math., 206:2 (2011), 245–310, arXiv: 0906.1364 | DOI | MR

[18] M. Finkelberg, A. Tsymbaliuk, Multiplicative slices, relativistic Toda and shifted quantum affine algebras, arXiv: 1708.01795

[19] R. Gonin, A. Tsymbaliuk, On Sevostyanov's construction of quantum difference Toda lattices for classical groups, arXiv: 1804.01063

[20] P. Di Francesco, “Quantum $A_r$ $Q$-system solutions as q-multinomial series”, Electron. J. Comb., 18:1 (2011), 176, 17 pp., arXiv: 1104.0339 | MR

[21] A. V. Zabrodin, “Raznostnye uravneniya Khiroty”, TMF, 113:2 (1997), 179–230, arXiv: solv-int/9704001 | DOI | DOI | MR

[22] S. Fomin, A. Zelevinsky, “Cluster algebras IV: coefficients”, Compos. Math., 143:1 (2007), 112–164, arXiv: math/0602259 | DOI | MR

[23] M. L. Kontsevich, “Ravnomernye raspolozheniya”, Kvant, 1985, no. 7, 51–52

[24] R. Inoue, T. Lam, P. Pylyavskyy, “Toric networks, geometric $R$-matrices and generalized discrete Toda lattices”, Commun. Math. Phys., 347:3 (2016), 799-855, arXiv: 1504.03448 | DOI | MR

[25] M. A. Bershtein, A. I. Shchechkin, “$q$-Deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A: Math. Theor., 50:8 (2017), 085202, arXiv: 1608.02566 | DOI | MR

[26] G. Felder, M. Müller-Lennert, “Analyticity of Nekrasov partition functions”, Commun. Math. Phys., 364:2 (2018), 683–718, arXiv: 1709.05232 | DOI | MR

[27] H. Nakajima, K. Yoshioka, “Perverse coherent sheaves on blow-up, III: blow-up formula from wall-crossing”, Kyoto J. Math., 51:2 (2011), 263–335, arXiv: 0911.1773 | DOI | MR

[28] T. Maeda, T. Nakatsu, K. Takasaki, T. Tamakoshi, “Five-dimensional supersymmetric Yang–Mills theories and random plane partitions”, JHEP, 03 (2005), 056, 28 pp., arXiv: hep-th/0412327 | DOI | MR

[29] K. Takasaki, “Integrable structure of melting crystal model with two $q$-parameters”, J. Geom. Phys., 59:9 (2009), 1244–1257, arXiv: 0903.2607 | DOI | MR

[30] H. Sakai, “Problem: discrete Painlevé equations and their Lax forms”, Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and Their Deformations. Painlevé Hierarchies, RIMS Kôkyûroku Bessatsu, B2, ed. Y. Takei, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 195–208 | MR

[31] N. A. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progress in Mathematics, 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, 2006, 525–596, arXiv: hep-th/0306238 | DOI

[32] G. Bonnet, F. David, B. Eynard, “Breakdown of universality in multi-cut matrix models”, J. Phys. A: Math. Gen., 33:38 (2000), 6739–6768, arXiv: cond-mat/0003324 | DOI | MR

[33] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Sci., Singapore, 1999 | DOI | MR

[34] V. V. Fock, Inverse spectral problem for GK integrable system, arXiv: 1503.00289

[35] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin–New York, 1973 | MR

[36] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatlit, M., 1963 | MR

[37] O. Gamayun, N. Iorgov, O. Lisovyy, “How instanton combinatorics solves Painlevé VI, V and III's”, J. Phys. A: Math. Theor., 46:33 (2013), 335203, 29 pp., arXiv: 1302.1832 | DOI | MR

[38] M. A. Bershtein, A. I. Shchechkin, “Bäcklund transformation of Painlevé III($D_8$) $\tau$ function”, J. Phys. A: Math. Theor., 50:11 (2017), 115205, 31 pp., arXiv: 1608.02568 | DOI | MR

[39] P. Gavrylenko, A. Marshakov, “Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations”, JHEP, 02 (2016), 181, 31 pp., arXiv: 1507.08794 | DOI | MR

[40] G. Bonelli, A. Grassi, A. Tanzini, “New results in $\mathcal N=2$ theories from non-perturbative string”, Ann. Inst. H. Poincaré, 19:3 (2018), 743–774, arXiv: 1704.01517 | DOI | MR

[41] G. Bonelli, A. Grassi, A. Tanzini, Quantum curves and $q$-deformed Painlevé equations, arXiv: 1710.11603

[42] Y. Hatsuda, M. Mariño, “Exact quantization conditions for the relativistic Toda lattice”, JHEP, 05 (2016), 133, 34 pp., arXiv: 1511.02860 | DOI | MR

[43] S. Franco, Y. Hatsuda, M. Mariño, “Exact quantization conditions for cluster integrable systems”, J. Stat. Mech., 2016:6 (2016), 063107, 30 pp., arXiv: 1512.03061 | DOI | MR