Cluster Toda chains and Nekrasov functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 179-214
Voir la notice de l'article provenant de la source Math-Net.Ru
We extend the relation between cluster integrable systems and $q$-difference equations beyond the Painlevé case. We consider the class of hyperelliptic curves where the Newton polygons contain only four boundary points. We present the corresponding cluster integrable Toda systems and identify their discrete automorphisms with certain reductions of the Hirota difference equation. We also construct nonautonomous versions of these equations and find that their solutions are expressed in terms of five-dimensional Nekrasov functions with Chern–Simons contributions, while these equations in the autonomous case are solved in terms of Riemann theta functions.
Keywords:
Supersymmetric gauge theories, cluster integrable systems, q-difference Painleve equation.
@article{TMF_2019_198_2_a0,
author = {M. A. Bershtein and P. G. Gavrilenko and A. V. Marshakov},
title = {Cluster {Toda} chains and {Nekrasov} functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--214},
publisher = {mathdoc},
volume = {198},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/}
}
TY - JOUR AU - M. A. Bershtein AU - P. G. Gavrilenko AU - A. V. Marshakov TI - Cluster Toda chains and Nekrasov functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 179 EP - 214 VL - 198 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/ LA - ru ID - TMF_2019_198_2_a0 ER -
M. A. Bershtein; P. G. Gavrilenko; A. V. Marshakov. Cluster Toda chains and Nekrasov functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 179-214. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/