@article{TMF_2019_198_2_a0,
author = {M. A. Bershtein and P. G. Gavrilenko and A. V. Marshakov},
title = {Cluster {Toda} chains and {Nekrasov} functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {179--214},
year = {2019},
volume = {198},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/}
}
TY - JOUR AU - M. A. Bershtein AU - P. G. Gavrilenko AU - A. V. Marshakov TI - Cluster Toda chains and Nekrasov functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 179 EP - 214 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/ LA - ru ID - TMF_2019_198_2_a0 ER -
M. A. Bershtein; P. G. Gavrilenko; A. V. Marshakov. Cluster Toda chains and Nekrasov functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 2, pp. 179-214. http://geodesic.mathdoc.fr/item/TMF_2019_198_2_a0/
[1] M. Bershtein, P. Gavrylenko, A. Marshakov, “Cluster integrable systems, $q$-Painlevé equations and their quantization”, JHEP, 02 (2018), 077, 33 pp., arXiv: 1711.02063 | DOI | MR
[2] A. B. Goncharov, R. Kenyon, “Dimers and cluster integrable systems”, Ann. Sci. École Norm. Supér., 46:5 (2013), 747–813, arXiv: 1107.5588 | DOI | MR
[3] V. Fock, A. Marshakov, “Loop groups, clusters, dimers and integrable systems”, Geometry and Quantization of Moduli Spaces, Advanced Courses in Mathematics – CRM Barcelona (ACMBIRK), eds. L. Álvarez Cónsul, J. E. Andersen, I. Mundet i Riera, Springer, Cham, 2016, 1–65, arXiv: 1401.1606 | DOI | MR
[4] O. Gamayun, N. Iorgov, O. Lisovyy, “Conformal field theory of Painlevé VI”, JHEP, 10 (2012), 38, 24 pp., arXiv: 1207.0787 | DOI | MR
[5] P. Gavrylenko, “Isomonodromic $\tau$-functions and $W_N$ conformal blocks”, JHEP, 09 (2015), 167, 23 pp., arXiv: 1505.00259 | DOI | MR
[6] H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Commun. Math. Phys., 220:1 (2001), 165–229 | DOI | MR
[7] S. Franco, A. Hanany, D. Vegh, B. Wecht, K. D. Kennaway, “Brane dimers and quiver gauge theories”, JHEP, 01 (2006), 096, 48 pp., arXiv: hep-th/0504110 | DOI | MR
[8] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, B. Wecht, “Gauge theories from toric geometry and brane tilings”, JHEP, 01 (2006), 128, 40 pp., arXiv: hep-th/0505211 | DOI | MR
[9] A. Brini, A. Tanzini, “Exact results for topological strings on resolved $Y^{p,q}$ singularities”, Commun. Math. Phys., 289:1 (2009), 205–252, arXiv: 0804.2598 | DOI | MR
[10] R. Eager, S. Franco, K. Schaeffer, “Dimer models and integrable systems”, JHEP, 06 (2012), 106, 24 pp., arXiv: 1107.1244 | DOI | MR
[11] A. Marshakov, “Lie groups, cluster variables and integrable systems”, J. Geom. Phys., 67 (2013), 16–36, arXiv: 1207.1869 | DOI | MR
[12] A. Iqbal, A. K. Kashani-Poor, “Instanton counting and Chern–Simons theory”, Adv. Theor. Math. Phys., 7:3 (2003), 457–497, arXiv: hep-th/0212279 | DOI | MR
[13] T. Eguchi, H. Kanno, “Topological strings and Nekrasov's formulas”, JHEP, 12 (2003), 006, 29 pp., arXiv: hep-th/0310235 | DOI
[14] Y. Tachikawa, “Five-dimensional Chern–Simons terms and Nekrasov's instanton counting”, JHEP, 02 (2004), 050, 13 pp., arXiv: hep-th/0401184 | DOI | MR
[15] L. Göttshe, H. Nakajima, K. Yoshioka, “$K$-theoretic Donaldson invariants via instanton counting”, Pure Appl. Math. Quart., 5:3 (2009), 1029–1111, arXiv: math/0611945 | DOI | MR
[16] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl
[17] M. Gekhtman, M. Shapiro, A. Vainshtein, “Generalized Bäcklund–Darboux transformations for Coxeter–Toda flows from a cluster algebra perspective”, Acta Math., 206:2 (2011), 245–310, arXiv: 0906.1364 | DOI | MR
[18] M. Finkelberg, A. Tsymbaliuk, Multiplicative slices, relativistic Toda and shifted quantum affine algebras, arXiv: 1708.01795
[19] R. Gonin, A. Tsymbaliuk, On Sevostyanov's construction of quantum difference Toda lattices for classical groups, arXiv: 1804.01063
[20] P. Di Francesco, “Quantum $A_r$ $Q$-system solutions as q-multinomial series”, Electron. J. Comb., 18:1 (2011), 176, 17 pp., arXiv: 1104.0339 | MR
[21] A. V. Zabrodin, “Raznostnye uravneniya Khiroty”, TMF, 113:2 (1997), 179–230, arXiv: solv-int/9704001 | DOI | DOI | MR
[22] S. Fomin, A. Zelevinsky, “Cluster algebras IV: coefficients”, Compos. Math., 143:1 (2007), 112–164, arXiv: math/0602259 | DOI | MR
[23] M. L. Kontsevich, “Ravnomernye raspolozheniya”, Kvant, 1985, no. 7, 51–52
[24] R. Inoue, T. Lam, P. Pylyavskyy, “Toric networks, geometric $R$-matrices and generalized discrete Toda lattices”, Commun. Math. Phys., 347:3 (2016), 799-855, arXiv: 1504.03448 | DOI | MR
[25] M. A. Bershtein, A. I. Shchechkin, “$q$-Deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A: Math. Theor., 50:8 (2017), 085202, arXiv: 1608.02566 | DOI | MR
[26] G. Felder, M. Müller-Lennert, “Analyticity of Nekrasov partition functions”, Commun. Math. Phys., 364:2 (2018), 683–718, arXiv: 1709.05232 | DOI | MR
[27] H. Nakajima, K. Yoshioka, “Perverse coherent sheaves on blow-up, III: blow-up formula from wall-crossing”, Kyoto J. Math., 51:2 (2011), 263–335, arXiv: 0911.1773 | DOI | MR
[28] T. Maeda, T. Nakatsu, K. Takasaki, T. Tamakoshi, “Five-dimensional supersymmetric Yang–Mills theories and random plane partitions”, JHEP, 03 (2005), 056, 28 pp., arXiv: hep-th/0412327 | DOI | MR
[29] K. Takasaki, “Integrable structure of melting crystal model with two $q$-parameters”, J. Geom. Phys., 59:9 (2009), 1244–1257, arXiv: 0903.2607 | DOI | MR
[30] H. Sakai, “Problem: discrete Painlevé equations and their Lax forms”, Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and Their Deformations. Painlevé Hierarchies, RIMS Kôkyûroku Bessatsu, B2, ed. Y. Takei, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 195–208 | MR
[31] N. A. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The Unity of Mathematics, Progress in Mathematics, 244, eds. P. Etingof, V. Retakh, I. M. Singer, Birkhäuser, Boston, 2006, 525–596, arXiv: hep-th/0306238 | DOI
[32] G. Bonnet, F. David, B. Eynard, “Breakdown of universality in multi-cut matrix models”, J. Phys. A: Math. Gen., 33:38 (2000), 6739–6768, arXiv: cond-mat/0003324 | DOI | MR
[33] A. Marshakov, Seiberg–Witten Theory and Integrable Systems, World Sci., Singapore, 1999 | DOI | MR
[34] V. V. Fock, Inverse spectral problem for GK integrable system, arXiv: 1503.00289
[35] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin–New York, 1973 | MR
[36] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatlit, M., 1963 | MR
[37] O. Gamayun, N. Iorgov, O. Lisovyy, “How instanton combinatorics solves Painlevé VI, V and III's”, J. Phys. A: Math. Theor., 46:33 (2013), 335203, 29 pp., arXiv: 1302.1832 | DOI | MR
[38] M. A. Bershtein, A. I. Shchechkin, “Bäcklund transformation of Painlevé III($D_8$) $\tau$ function”, J. Phys. A: Math. Theor., 50:11 (2017), 115205, 31 pp., arXiv: 1608.02568 | DOI | MR
[39] P. Gavrylenko, A. Marshakov, “Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations”, JHEP, 02 (2016), 181, 31 pp., arXiv: 1507.08794 | DOI | MR
[40] G. Bonelli, A. Grassi, A. Tanzini, “New results in $\mathcal N=2$ theories from non-perturbative string”, Ann. Inst. H. Poincaré, 19:3 (2018), 743–774, arXiv: 1704.01517 | DOI | MR
[41] G. Bonelli, A. Grassi, A. Tanzini, Quantum curves and $q$-deformed Painlevé equations, arXiv: 1710.11603
[42] Y. Hatsuda, M. Mariño, “Exact quantization conditions for the relativistic Toda lattice”, JHEP, 05 (2016), 133, 34 pp., arXiv: 1511.02860 | DOI | MR
[43] S. Franco, Y. Hatsuda, M. Mariño, “Exact quantization conditions for cluster integrable systems”, J. Stat. Mech., 2016:6 (2016), 063107, 30 pp., arXiv: 1512.03061 | DOI | MR