Construction of the Gelfand–Tsetlin basis for unitary principal
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 162-174
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider infinite-dimensional unitary principal series representations of the algebra $sl_n(\mathbb C)$, implemented on the space of functions of $n(n{-}1)/2$ complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra $n$. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.
Keywords: Gelfand–Tsetlin basis, intertwining operator, unitary principal series representation.
@article{TMF_2019_198_1_a9,
     author = {P. A. Valinevich},
     title = {Construction of {the~Gelfand{\textendash}Tsetlin} basis for unitary principal},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {162--174},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a9/}
}
TY  - JOUR
AU  - P. A. Valinevich
TI  - Construction of the Gelfand–Tsetlin basis for unitary principal
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 162
EP  - 174
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a9/
LA  - ru
ID  - TMF_2019_198_1_a9
ER  - 
%0 Journal Article
%A P. A. Valinevich
%T Construction of the Gelfand–Tsetlin basis for unitary principal
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 162-174
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a9/
%G ru
%F TMF_2019_198_1_a9
P. A. Valinevich. Construction of the Gelfand–Tsetlin basis for unitary principal. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 162-174. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a9/

[1] I. M. Gelfand, M. L. Tsetlin, “Konechnomernye predstavleniya gruppy unimodulyarnykh matrits”, Dokl. AN SSSR, 71:6 (1950), 1017–1020 | MR | Zbl

[2] A. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | DOI | MR | MR | Zbl | Zbl

[3] L. Bidenkharn, Dzh. Lauk, Uglovoi moment v kvantovoi fizike, Mir, M., 1984 | MR | Zbl

[4] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of Algebra, 4, ed. M. Hazewinkel, Elsevier, Amsterdam, 2006, 109–170 | DOI | MR

[5] I. M. Gelfand, M. A. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Tr. MIAN SSSR, 36, Izd-vo AN SSSR, M.–L., 1950 | MR | Zbl

[6] M. I. Graev, “Kontinualnyi analog skhem Gelfanda–Tsetlina i realizatsiya osnovnoi serii neprivodimykh unitarnykh predstavlenii gruppy $GL(n, \mathbb{C})$ v prostranstve funktsii na mnogoobrazii etikh skhem”, Dokl. AN SSSR, 412:2 (2007), 154–158 | DOI

[7] M. I. Graev, “Infinite-dimensional representations of the Lie algebra $gl(n, \mathbb{C})$ related to complex analogs of the Gelfand–Tsetlin patterns and general hypergeometric functions on the Lie group $GL(n,\mathbb{C})$”, Acta Appl. Math., 81:1–3 (2004), 193–120 | DOI | MR

[8] Yu. A. Neretin, “Restriction of representations of $GL(n+1, \mathbb{C})$ to $GL(n, \mathbb{C})$ and action of the Lie overalgebra”, Algebr. Represent. Theory, 21:5 (2018), 1087–1117, arXiv: 1510.03611 | MR

[9] M. Nazarov, V. O. Tarasov, “Yangians and Gelfand–Zetlin bases”, Publ. Res. Inst. Math. Sci., 30:3 (1994), 459–478 | DOI | MR

[10] S. E. Derkachev, A. N. Manashov, “Obschee reshenie uravneniya Yanga–Bakstera s gruppoi simmetrii $SL(n,\mathbb{C})$”, Algebra i analiz, 21:4 (2009), 1–94 | MR | Zbl

[11] P. A. Valinevich, S. E. Derkachev, P. P. Kulish, E. M. Uvarov, “Postroenie sistemy sobstvennykh funktsii kvantovykh minorov matritsy monodromii $SL(n, \mathbb{C})$-invariantnoi spinovoi tsepochki”, TMF, 189:2 (2016), 149–175 | DOI | MR

[12] I. M. Gelfand, M. I. Graev, “Konechnomernye neprivodimye predstavleniya unitarnoi i polnoi lineinoi gruppy i svyazannye s nimi spetsialnye funktsii”, Izv. AN SSSR. Ser. matem., 29:6 (1965), 1329–1356 | MR | Zbl

[13] M. Nazarov, V. O. Tarasov, “Representations of Yangians with Gelfand–Zetlin bases”, J. Reine Angew. Math., 496 (1998), 181–212 | DOI | MR

[14] A. I. Molev, Yangiany i klassicheskie algebry Li, Izd-vo MTsNMO, M., 2009 | MR | Zbl

[15] V. K. Dobrev, P. Truini, “Polynomal relization of $U_q(sl(3))$ Gel'fand–(Weyl)–Zetlin basis”, J. Math. Phys., 38:7 (1997), 3750–3767 | DOI | MR

[16] V. K. Dobrev, A. D. Mitov, P. Truini, “Normalized $U_q(sl(3))$ Gel'fand–(Weyl)–Zetlin basis and new summation formulas for $q$-hypergeometric functions”, J. Math. Phys., 41:11 (2000), 7752–7768 | DOI | MR