Isomorphism of the Yangian $Y_{\hbar}(A(m,n))$ of the special linear
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 145-161
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the approach of Gautam and Toledano Laredo, we construct an explicit isomorphism of the Yangian $Y_{\hbar}(A(m,n))$ of the special linear Lie superalgebra and the quantum loop superalgebra $U_{\hbar}(LA(m,n))$.
Keywords: Yangian of a Lie superalgebra, quantum loop superalgebra, Yangian module, Lie superalgebra, quantum affine superalgebra.
@article{TMF_2019_198_1_a8,
     author = {V. A. Stukopin},
     title = {Isomorphism of {the~Yangian} $Y_{\hbar}(A(m,n))$ of the~special linear},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {145--161},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a8/}
}
TY  - JOUR
AU  - V. A. Stukopin
TI  - Isomorphism of the Yangian $Y_{\hbar}(A(m,n))$ of the special linear
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 145
EP  - 161
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a8/
LA  - ru
ID  - TMF_2019_198_1_a8
ER  - 
%0 Journal Article
%A V. A. Stukopin
%T Isomorphism of the Yangian $Y_{\hbar}(A(m,n))$ of the special linear
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 145-161
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a8/
%G ru
%F TMF_2019_198_1_a8
V. A. Stukopin. Isomorphism of the Yangian $Y_{\hbar}(A(m,n))$ of the special linear. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 145-161. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a8/

[1] V. Kac, “A sketch of Lie superalgebra theory”, Commun. Math. Phys., 53:1 (1977), 31–64 | DOI | MR

[2] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie algebras and superalgebras, Academic Press, London, 2000 | MR

[3] V. G. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), v. 1, AMS, Providence, RI, 1987, 789–820 | MR | Zbl

[4] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl

[5] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovykh affinnykh algebr”, Dokl. AN SSSR, 269:1 (1987), 13–17 | MR | Zbl

[6] V. G. Drinfeld, “Vyrozhdennye affinnye algebry Gekke i yangiany”, Funkts. analiz i ego pril., 20:1 (1986), 69–70 | DOI | MR | Zbl

[7] V. Chari, A. Pressley, A guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR

[8] A. I. Molev, “Yangians and their applications”, Handbook of Algebra, 3, ed. M. Hazewinkel, Elsevier, Amsterdam, 2003, 907–959, arXiv: math/0211288 | DOI | MR

[9] A. I. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009 | MR | Zbl

[10] M. Nazarov, “Quantum Berezinian and the classical Capelly identity”, Lett. Math. Phys., 21:2 (1991), 123–131 | DOI | MR

[11] V. A. Stukopin, “O yangianakh superalgebr Li tipa $A(m,n)$”, Funktsion. analiz i ego prilozh., 28:3 (1994), 85–88 | DOI | MR | Zbl

[12] V. A. Stukopin, “O duble yangiana superalgebry Li tipa $A(m,n)$”, Funkts. analiz i ego pril., 40:2 (2006), 86–90 | DOI | DOI | MR | Zbl

[13] V. A. Stukopin, “Kvantovyi dubl yangiana superalgebry Li tipa $A(m,n)$ i vychislenie universalnoi $R$-matritsy”, Fundament. i prikl. matem., 11:2 (2005), 185–208 | DOI | MR | Zbl

[14] V. A. Stukopin, “Yangian strannoi superalgebry Li i ego kvantovyi dubl”, TMF, 174:1 (2013), 140–153 | DOI | DOI | MR | Zbl

[15] L. Dolan, Ch. Nappi, E. Witten, “Yangian Symmetry in $D=4$ superconformal Yang–Mills theory”, Quantum Theory and Symmetries, Proceedings of the 3rd International Symposium, dedicated to the memory of Professor Freydoon Mansouri (Cincinnati, OH, September 10–14, 2003), World Sci., Singapore, RI, 2004, 300–315, arXiv: hep-th/0401243 | DOI | MR

[16] F. Spill, A. Torrielli, “On Drinfeld's second realization of the AdS/CFT $\mathfrak{su}(2|2)$ Yangian”, J. Geom. Phys., 59:4 (2008), 489–502, arXiv: 0803.3194 | DOI | MR

[17] V. Stukopin, “Yangian of the strange Lie superalgebra $Q_{n-1}$ type, Drinfel'd approach”, SIGMA, 3 (2007), 069, 12 pp., arXiv: 0705.3250 | DOI | MR

[18] V. A. Stukopin, “Skruchennye yangiany, podkhod Drinfelda”, Sovremennaya matematika i ee prilozheniya, v. 60, Algebra, In-t kibernetiki NAN Gruzii, Tbilisi, 2008 | DOI | MR

[19] S. Gautam, V. Toledano Laredo, “Yangians and quantum loop algebras”, Selecta Math., 19:2 (2013), 271–336 | DOI | MR

[20] S. Gautam, V. Toledano Laredo, “Yangians, quantum loop algebras and abelian difference equations”, J. Amer. Math. Soc., 29:3 (2016), 775–824 | DOI | MR

[21] S. Gautam, V. Toledano Laredo, “Meromorphic tensor equivalence for Yangians and quantum loop algebras”, Publ. Math. Inst. Hautes Études Sci., 125:1 (2017), 267–337 | DOI | MR

[22] V. A. Stukopin, “O predstavleniyakh yangiana superalgebry Li tipa $A(m,n)$”, Izv. RAN. Ser. matem., 77:5 (2013), 179–202 | DOI | DOI | MR | Zbl

[23] V. Stukopin, “Representations of the Yangian of a Lie superalgebra $A(n,n)$ type”, J. Phys.: Conf. Ser., 411:1 (2013), 012027, 14 pp. | DOI