Diagram technique for the heat kernel of the covariant Laplace operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 113-132
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a diagram technique used to calculate the Seeley–DeWitt coefficients for a covariant Laplace operator. We use the combinatorial properties of the coefficients to construct a matrix formalism and derive a formula for an arbitrary coefficient.
Keywords: heat kernel, Seeley–DeWitt coefficient, gauge connection, operator determinant, covariant Laplace operator, Yang–Mills theory.
Mots-clés : diagram technique
@article{TMF_2019_198_1_a6,
     author = {A. V. Ivanov},
     title = {Diagram technique for the~heat kernel of the~covariant {Laplace} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {113--132},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Diagram technique for the heat kernel of the covariant Laplace operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 113
EP  - 132
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a6/
LA  - ru
ID  - TMF_2019_198_1_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Diagram technique for the heat kernel of the covariant Laplace operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 113-132
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a6/
%G ru
%F TMF_2019_198_1_a6
A. V. Ivanov. Diagram technique for the heat kernel of the covariant Laplace operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 113-132. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a6/

[1] V. A. Fok, “Sobstvennoe vremya v klassicheskoi i kvantovoi mekhanike”, Izv. AN SSSR. Ser. fiz., 4–5 (1937), 551–568 | Zbl | Zbl

[2] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR

[3] B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160:5 (1967), 1113–1148 ; “Quantum theory of gravity. II. The manifestly covariant theory”, 162:5 (1967), 1195–1239 ; “Quantum theory of gravity. III. Applications of the covariant theory”, 1239–1256 | DOI | DOI | DOI

[4] B. Iochum, C. Levy, D. Vassilevich, “Spectral action beyond the weak-field approximation”, Commun. Math. Phys., 316:3 (2012), 595–613, arXiv: 1108.3749 | DOI | MR

[5] I. Jack, H. Osborn, “Two-loop background field calculations for arbitrary background fields”, Nucl. Phys. B, 207:3 (1982), 474–504 | DOI

[6] J. P. Bornsen, A. E. M. van de Ven, “Three-loop Yang–Mills $\beta$-function via the covariant background field method”, Nucl. Phys. B, 657:1–3 (2003), 257–303, arXiv: hep-th/0211246 | DOI | MR

[7] H. P. McKean, I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Differential Geom., 1:1–2 (1967), 43–69 | DOI | MR

[8] P. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differential Geom., 10:4 (1975), 601–618 | DOI | MR

[9] P. Amsterdamski, A. L. Berkin, D. J. O'Connor, “ $b_8$ 'Hamidew' coefficient for a scalar field”, Class. Quant. Grav., 6:12 (1989), 1981–1991 | DOI | MR

[10] I. G. Avramidi, “The covariant technique for the calculation of the heat kernel asymptotic expansion”, Phys. Lett. B, 238:1 (1990), 92–97 ; “A covariant technique for the calculation of the one-loop effective action”, Nucl. Phys. B, 355:3 (1991), 712–754 | DOI | MR | DOI | MR

[11] A. E. M. van de Ven, “Index-free heat kernel coefficients”, Class. Quant. Grav., 15:8 (1998), 2311–2344, arXiv: hep-th/9708152 | DOI | MR

[12] D. V. Vassilevich, “Heat kernel expansion: user's manual”, Phys. Rep., 388:5–6 (2003), 279–360, arXiv: hep-th/0306138 | DOI | MR

[13] A. V. Ivanov, “About renormalization of the Yang–Mills theory and the approach to calculation of the heat kernel”, EPJ Web Conf., 158 (2017), 07004, 5 pp. | DOI

[14] A. O. Barvinsky, G. A. Vilkovisky, “Beyond the Schwinger–DeWitt technique: converting loops into trees and in–in currents”, Nucl. Phys. B, 282:1 (1987), 163–188 ; “Covariant perturbation theory (II). Second order in the curvature. General algorithms”, 333:2 (1990), 471–511 ; “Covariant perturbation theory (III). Spectral representations of the third-order form factors”, 512–524 | DOI | MR | DOI | MR | DOI | MR

[15] I. G. Avramidi, “Heat kernel on homogeneous bundles over symmetric spaces”, Commun. Math. Phys., 288:3 (2009), 963–1006, arXiv: math/0701489 | DOI | MR

[16] L. D. Faddeev, “Mass in quantum Yang–Mills theory (comment on a Clay Millennium Problem)”, Perspectives in Analysis. Essays in Honor of Lenart Carleson's 75th Birthday, Mathematical Physics Studies, 27, eds. M. Benedicks, P. W. Jones, S. Smirnov, B. Winckler, Springer, Berlin, 2011, 63–72 | DOI | MR

[17] S. E. Derkachëv, A. V. Ivanov, L. D. Faddeev, “Stsenarii dlya perenormirovki v kvantovoi teorii Yanga–Millsa v chetyrekhmernom prostranstve-vremeni”, TMF, 192:2 (2017), 227–234 | DOI | DOI | MR

[18] G. M. Shore, “Symmetry restoration and the background field method in gauge theories”, Ann. Phys., 137:2 (1981), 262–305 | DOI | MR