Mots-clés : diagram technique
@article{TMF_2019_198_1_a6,
author = {A. V. Ivanov},
title = {Diagram technique for the~heat kernel of the~covariant {Laplace} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {113--132},
year = {2019},
volume = {198},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a6/}
}
A. V. Ivanov. Diagram technique for the heat kernel of the covariant Laplace operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 113-132. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a6/
[1] V. A. Fok, “Sobstvennoe vremya v klassicheskoi i kvantovoi mekhanike”, Izv. AN SSSR. Ser. fiz., 4–5 (1937), 551–568 | Zbl | Zbl
[2] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR
[3] B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160:5 (1967), 1113–1148 ; “Quantum theory of gravity. II. The manifestly covariant theory”, 162:5 (1967), 1195–1239 ; “Quantum theory of gravity. III. Applications of the covariant theory”, 1239–1256 | DOI | DOI | DOI
[4] B. Iochum, C. Levy, D. Vassilevich, “Spectral action beyond the weak-field approximation”, Commun. Math. Phys., 316:3 (2012), 595–613, arXiv: 1108.3749 | DOI | MR
[5] I. Jack, H. Osborn, “Two-loop background field calculations for arbitrary background fields”, Nucl. Phys. B, 207:3 (1982), 474–504 | DOI
[6] J. P. Bornsen, A. E. M. van de Ven, “Three-loop Yang–Mills $\beta$-function via the covariant background field method”, Nucl. Phys. B, 657:1–3 (2003), 257–303, arXiv: hep-th/0211246 | DOI | MR
[7] H. P. McKean, I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Differential Geom., 1:1–2 (1967), 43–69 | DOI | MR
[8] P. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differential Geom., 10:4 (1975), 601–618 | DOI | MR
[9] P. Amsterdamski, A. L. Berkin, D. J. O'Connor, “ $b_8$ 'Hamidew' coefficient for a scalar field”, Class. Quant. Grav., 6:12 (1989), 1981–1991 | DOI | MR
[10] I. G. Avramidi, “The covariant technique for the calculation of the heat kernel asymptotic expansion”, Phys. Lett. B, 238:1 (1990), 92–97 ; “A covariant technique for the calculation of the one-loop effective action”, Nucl. Phys. B, 355:3 (1991), 712–754 | DOI | MR | DOI | MR
[11] A. E. M. van de Ven, “Index-free heat kernel coefficients”, Class. Quant. Grav., 15:8 (1998), 2311–2344, arXiv: hep-th/9708152 | DOI | MR
[12] D. V. Vassilevich, “Heat kernel expansion: user's manual”, Phys. Rep., 388:5–6 (2003), 279–360, arXiv: hep-th/0306138 | DOI | MR
[13] A. V. Ivanov, “About renormalization of the Yang–Mills theory and the approach to calculation of the heat kernel”, EPJ Web Conf., 158 (2017), 07004, 5 pp. | DOI
[14] A. O. Barvinsky, G. A. Vilkovisky, “Beyond the Schwinger–DeWitt technique: converting loops into trees and in–in currents”, Nucl. Phys. B, 282:1 (1987), 163–188 ; “Covariant perturbation theory (II). Second order in the curvature. General algorithms”, 333:2 (1990), 471–511 ; “Covariant perturbation theory (III). Spectral representations of the third-order form factors”, 512–524 | DOI | MR | DOI | MR | DOI | MR
[15] I. G. Avramidi, “Heat kernel on homogeneous bundles over symmetric spaces”, Commun. Math. Phys., 288:3 (2009), 963–1006, arXiv: math/0701489 | DOI | MR
[16] L. D. Faddeev, “Mass in quantum Yang–Mills theory (comment on a Clay Millennium Problem)”, Perspectives in Analysis. Essays in Honor of Lenart Carleson's 75th Birthday, Mathematical Physics Studies, 27, eds. M. Benedicks, P. W. Jones, S. Smirnov, B. Winckler, Springer, Berlin, 2011, 63–72 | DOI | MR
[17] S. E. Derkachëv, A. V. Ivanov, L. D. Faddeev, “Stsenarii dlya perenormirovki v kvantovoi teorii Yanga–Millsa v chetyrekhmernom prostranstve-vremeni”, TMF, 192:2 (2017), 227–234 | DOI | DOI | MR
[18] G. M. Shore, “Symmetry restoration and the background field method in gauge theories”, Ann. Phys., 137:2 (1981), 262–305 | DOI | MR