Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 101-112
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the Wigner unitary representations for the covering Poincaré group $ISL(2,\mathbb C)$, we construct spin–tensor wave functions of free massive arbitrary-spin particles satisfying the Dirac–Pauli–Fierz equations. We obtain polarization spin–tensors and indicate conditions that fix the density matrices (Behrends–Fronsdal projection operators), which determine the numerators in the propagators of the fields of such particles. Using such conditions extended to the multidimensional case, we construct a generalization of Behrends–Fronsdal projection operators (for any number $D>2$ of space–time dimensions) corresponding to a symmetric representation of the $D$-dimensional Poincaré group.
Keywords: higher spin, Wigner unitary representation, Behrends–Fronsdal projection operator.
Mots-clés : Poincaré group, Dirac–Pauli–Fierz equations
@article{TMF_2019_198_1_a5,
     author = {A. P. Isaev and M. A. Podoynitsyin},
     title = {Polarization tensors for massive arbitrary-spin particles and {the~Behrends{\textendash}Fronsdal} projection operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {101--112},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/}
}
TY  - JOUR
AU  - A. P. Isaev
AU  - M. A. Podoynitsyin
TI  - Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 101
EP  - 112
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/
LA  - ru
ID  - TMF_2019_198_1_a5
ER  - 
%0 Journal Article
%A A. P. Isaev
%A M. A. Podoynitsyin
%T Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 101-112
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/
%G ru
%F TMF_2019_198_1_a5
A. P. Isaev; M. A. Podoynitsyin. Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/

[1] A. P. Isaev, M. A. Podoinitsyn, “Two-spinor description of massive particles and relativistic spin projection operators”, Nucl. Phys. B, 929 (2018), 452–484, arXiv: 1712.00833 | DOI | MR

[2] E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group”, Ann. Math., 40:1 (1939), 149–204 ; V. Bargmann, E. P. Wigner, “Group theoretical discussion of relativistic wave equations”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 211–223 | DOI | MR | DOI | MR

[3] Yu. V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR

[4] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl

[5] Yu. B. Rumer, A. I. Fet, Teoriya grupp i kvantovannye polya, Nauka, M., 1977 | MR

[6] S. Weinberg, “Feynman rules for any spin”, Phys. Rev., 133:5B (1964), B1318–B1332 | DOI | MR

[7] P. A. M. Dirac, “Relativistic wave equations”, Proc. Roy. Soc. London Ser. A, 155:886 (1936), 447–459 | DOI

[8] M. Fierz, “Über den Drehimpuls von Teilichen mit Ruhemasse null und beliebigem Spin”, Helvetica Phys. Acta, 13:12 (1940), 45–60 | MR | Zbl

[9] M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. Roy. Soc. London Ser. A, 173:953 (1939), 211–232 | DOI | MR

[10] R. E. Behrends, C. Fronsdal, “Fermi decay for higher spin particles”, Phys. Rev., 106:2 (1957), 345–353 | DOI | MR

[11] D. Ponomarev, A. A. Tseytlin, “On quantum corrections in higher-spin theory in flat space”, JHEP, 05 (2016), 184, 35 pp., arXiv: 1603.06273 | MR

[12] D. Francia, J. Mourad, A. Sagnotti, “Current exchanges and unconstrained higher spins”, Nucl. Phys. B, 773:3 (2007), 203–237, arXiv: hep-th/0701163 | DOI | MR

[13] C. Fronsdal, “On the theory of higher spin fields”, Nuovo Cimento, 9 (1958), 416–443 | DOI | MR

[14] E. Witten, “Perturbative gauge theory as a string theory in twistor space”, Commun. Math. Phys., 252:1–3 (2004), 189–258, arXiv: hep-th/0312171 | DOI | MR

[15] H. Elvang, Y.-T. Huang, Scattering amplitudes in gauge theory and gravity, Cambridge Univ. Press, Cambridge, 2015 | DOI | MR

[16] E. Conde, A. Marzolla, “Lorentz constraints on massive three-point amplitudes”, JHEP, 09 (2016), 041 pp., arXiv: 1601.08113 | DOI | MR

[17] E. Conde, E. Joung, K. Mkrtchyan, “Spinor-helicity three-point amplitudes from local cubic interactions”, JHEP, 08 (2016), 040, 28 pp., arXiv: 1605.07402 | DOI | MR

[18] A. Marzolla, “The 4D on-shell 3-point amplitude in spinor-helicity formalism and BCFW recursion relations”, PoS(Modave2016), 2017, 002, 43 pp., arXiv: 1705.09678 | DOI

[19] A.-H. Nima, T.-C. Huang, Y.-T. Huang, Scattering amplitudes for all masses and spins, arXiv: 1709.04891