Mots-clés : Poincaré group, Dirac–Pauli–Fierz equations
@article{TMF_2019_198_1_a5,
author = {A. P. Isaev and M. A. Podoynitsyin},
title = {Polarization tensors for massive arbitrary-spin particles and {the~Behrends{\textendash}Fronsdal} projection operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {101--112},
year = {2019},
volume = {198},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/}
}
TY - JOUR AU - A. P. Isaev AU - M. A. Podoynitsyin TI - Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 101 EP - 112 VL - 198 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/ LA - ru ID - TMF_2019_198_1_a5 ER -
%0 Journal Article %A A. P. Isaev %A M. A. Podoynitsyin %T Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 101-112 %V 198 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/ %G ru %F TMF_2019_198_1_a5
A. P. Isaev; M. A. Podoynitsyin. Polarization tensors for massive arbitrary-spin particles and the Behrends–Fronsdal projection operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 101-112. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a5/
[1] A. P. Isaev, M. A. Podoinitsyn, “Two-spinor description of massive particles and relativistic spin projection operators”, Nucl. Phys. B, 929 (2018), 452–484, arXiv: 1712.00833 | DOI | MR
[2] E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group”, Ann. Math., 40:1 (1939), 149–204 ; V. Bargmann, E. P. Wigner, “Group theoretical discussion of relativistic wave equations”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 211–223 | DOI | MR | DOI | MR
[3] Yu. V. Novozhilov, Vvedenie v teoriyu elementarnykh chastits, Nauka, M., 1972 | MR
[4] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR | MR | Zbl
[5] Yu. B. Rumer, A. I. Fet, Teoriya grupp i kvantovannye polya, Nauka, M., 1977 | MR
[6] S. Weinberg, “Feynman rules for any spin”, Phys. Rev., 133:5B (1964), B1318–B1332 | DOI | MR
[7] P. A. M. Dirac, “Relativistic wave equations”, Proc. Roy. Soc. London Ser. A, 155:886 (1936), 447–459 | DOI
[8] M. Fierz, “Über den Drehimpuls von Teilichen mit Ruhemasse null und beliebigem Spin”, Helvetica Phys. Acta, 13:12 (1940), 45–60 | MR | Zbl
[9] M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. Roy. Soc. London Ser. A, 173:953 (1939), 211–232 | DOI | MR
[10] R. E. Behrends, C. Fronsdal, “Fermi decay for higher spin particles”, Phys. Rev., 106:2 (1957), 345–353 | DOI | MR
[11] D. Ponomarev, A. A. Tseytlin, “On quantum corrections in higher-spin theory in flat space”, JHEP, 05 (2016), 184, 35 pp., arXiv: 1603.06273 | MR
[12] D. Francia, J. Mourad, A. Sagnotti, “Current exchanges and unconstrained higher spins”, Nucl. Phys. B, 773:3 (2007), 203–237, arXiv: hep-th/0701163 | DOI | MR
[13] C. Fronsdal, “On the theory of higher spin fields”, Nuovo Cimento, 9 (1958), 416–443 | DOI | MR
[14] E. Witten, “Perturbative gauge theory as a string theory in twistor space”, Commun. Math. Phys., 252:1–3 (2004), 189–258, arXiv: hep-th/0312171 | DOI | MR
[15] H. Elvang, Y.-T. Huang, Scattering amplitudes in gauge theory and gravity, Cambridge Univ. Press, Cambridge, 2015 | DOI | MR
[16] E. Conde, A. Marzolla, “Lorentz constraints on massive three-point amplitudes”, JHEP, 09 (2016), 041 pp., arXiv: 1601.08113 | DOI | MR
[17] E. Conde, E. Joung, K. Mkrtchyan, “Spinor-helicity three-point amplitudes from local cubic interactions”, JHEP, 08 (2016), 040, 28 pp., arXiv: 1605.07402 | DOI | MR
[18] A. Marzolla, “The 4D on-shell 3-point amplitude in spinor-helicity formalism and BCFW recursion relations”, PoS(Modave2016), 2017, 002, 43 pp., arXiv: 1705.09678 | DOI
[19] A.-H. Nima, T.-C. Huang, Y.-T. Huang, Scattering amplitudes for all masses and spins, arXiv: 1709.04891