Geometric solutions of the strict KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 54-78
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Splitting the algebra Psd of pseudodifferential operators into the Lie subalgebra of all differential operators without a constant term and the Lie subalgebra of all integral operators leads to an integrable hierarchy called the strict KP hierarchy. We consider two Psd modules, a linearization of the strict KP hierarchy and its dual, which play an essential role in constructing solutions geometrically. We characterize special vectors, called wave functions, in these modules; these vectors lead to solutions. We describe a relation between the KP hierarchy and its strict version and present an infinite-dimensional manifold from which these special vectors can be obtained. We show how a solution of the strict KP hierarchy can be constructed for any subspace $W$ in the Segal–Wilson Grassmannian of a Hilbert space and any line $\ell$ in $W$. Moreover, we describe the dual wave function geometrically and present a group of commuting flows that leave the found solutions invariant.
Keywords: pseudodifferential operator, KP hierarchy, strict KP hierarchy, (dual) linearization, (dual) oscillating function, (dual) wave function, Grassmannian.
@article{TMF_2019_198_1_a3,
     author = {G. F. Helminck and E. A. Panasenko},
     title = {Geometric solutions of the~strict {KP} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--78},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a3/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - E. A. Panasenko
TI  - Geometric solutions of the strict KP hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 54
EP  - 78
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a3/
LA  - ru
ID  - TMF_2019_198_1_a3
ER  - 
%0 Journal Article
%A G. F. Helminck
%A E. A. Panasenko
%T Geometric solutions of the strict KP hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 54-78
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a3/
%G ru
%F TMF_2019_198_1_a3
G. F. Helminck; E. A. Panasenko. Geometric solutions of the strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 54-78. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a3/

[1] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl

[2] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Cauchy problems related to integrable deformations of pseudo differential operators”, J. Geom. Phys., 85 (2014), 196–205 | DOI | MR

[3] G. F. Khelmink, E. A. Panasenko, S. V. Polenkova, “Bilineinye uravneniya dlya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 185:3 (2015), 512–526 | DOI | DOI | MR

[4] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Études Sci., 61 (1985), 5–65 | MR | Zbl

[5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Scientific, Singapore, 2003 | DOI | MR

[6] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13—16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[7] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[8] W. Oevel, W. Schief, “Darboux theorems and the KP hierarchy”, Applications of Analytic and Geometric Methods in Differential Equations, Proceedings of the NATO Advanced Research Workshop (Exeter, UK, 14–17 July, 1992), NATO ASI Series (Ser. C: Mathematical and Physical Sciences), 413, ed. P. A. Clarkson, Springer, Dordrecht, 1993, 193–206 | MR

[9] A. Pressley, G. Segal, Loop Groups, Oxford Univ. Press, Oxford, 1988 | MR

[10] N. H. Kuiper, “On the general linear group in Hilbert space”, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1964 (1964), ZW-011, 9 pp. | MR

[11] M. F. Atiyah, $K$-theory, Benjamin, New York, 1967 | MR | Zbl

[12] G. D. Birkhoff, “Singular points of ordinary differential equations”, Trans. AMS, 10:4 (1909), 436–470 | DOI | MR

[13] G. D. Birkhoff, “Equivalent singular points of ordinary linear differential equations”, Math. Ann., 74:1 (1913), 134–139 | DOI | MR

[14] A. Grothendieck, “Sur la classification des fibrés holomorphes sur la sphère de Riemann”, Amer. J. Math., 79:1 (1957), 121–138 | DOI | MR