@article{TMF_2019_198_1_a3,
author = {G. F. Helminck and E. A. Panasenko},
title = {Geometric solutions of the~strict {KP} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {54--78},
year = {2019},
volume = {198},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a3/}
}
G. F. Helminck; E. A. Panasenko. Geometric solutions of the strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 54-78. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a3/
[1] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl
[2] G. F. Helminck, A. G. Helminck, E. A. Panasenko, “Cauchy problems related to integrable deformations of pseudo differential operators”, J. Geom. Phys., 85 (2014), 196–205 | DOI | MR
[3] G. F. Khelmink, E. A. Panasenko, S. V. Polenkova, “Bilineinye uravneniya dlya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 185:3 (2015), 512–526 | DOI | DOI | MR
[4] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Études Sci., 61 (1985), 5–65 | MR | Zbl
[5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Scientific, Singapore, 2003 | DOI | MR
[6] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13—16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[7] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR
[8] W. Oevel, W. Schief, “Darboux theorems and the KP hierarchy”, Applications of Analytic and Geometric Methods in Differential Equations, Proceedings of the NATO Advanced Research Workshop (Exeter, UK, 14–17 July, 1992), NATO ASI Series (Ser. C: Mathematical and Physical Sciences), 413, ed. P. A. Clarkson, Springer, Dordrecht, 1993, 193–206 | MR
[9] A. Pressley, G. Segal, Loop Groups, Oxford Univ. Press, Oxford, 1988 | MR
[10] N. H. Kuiper, “On the general linear group in Hilbert space”, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1964 (1964), ZW-011, 9 pp. | MR
[11] M. F. Atiyah, $K$-theory, Benjamin, New York, 1967 | MR | Zbl
[12] G. D. Birkhoff, “Singular points of ordinary differential equations”, Trans. AMS, 10:4 (1909), 436–470 | DOI | MR
[13] G. D. Birkhoff, “Equivalent singular points of ordinary linear differential equations”, Math. Ann., 74:1 (1913), 134–139 | DOI | MR
[14] A. Grothendieck, “Sur la classification des fibrés holomorphes sur la sphère de Riemann”, Amer. J. Math., 79:1 (1957), 121–138 | DOI | MR