The~$6j$-symbols for the~$SL(2,\mathbb C)$ group
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 32-53
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study $6j$-symbols or Racah coefficients for the tensor products of infinite-dimensional unitary principal series representations of the group $SL(2,\mathbb C)$. Using the Feynman diagram technique, we reproduce the results of Ismagilov in constructing these symbols (up to a slight difference associated with equivalent representations). The resulting $6j$-symbols are expressed either as a triple integral over complex plane or as an infinite bilateral sum of integrals of the Mellin–Barnes type.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
$3j$-symbol, $6j$-symbol
Keywords: Feynman diagram, $SL(2,\mathbb C)$ group, hypergeometric integral.
                    
                  
                
                
                Keywords: Feynman diagram, $SL(2,\mathbb C)$ group, hypergeometric integral.
@article{TMF_2019_198_1_a2,
     author = {S. \`E. Derkachev and V. P. Spiridonov},
     title = {The~$6j$-symbols for the~$SL(2,\mathbb C)$ group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--53},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a2/}
}
                      
                      
                    S. È. Derkachev; V. P. Spiridonov. The~$6j$-symbols for the~$SL(2,\mathbb C)$ group. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 32-53. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a2/