Quantum analogue of unstable limit cycles of a periodically perturbed inverted oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 19-31
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To study the quantum analogue of classical limit cycles, we consider the behavior of a particle in a negative quadratic potential perturbed by a sinusoidal field. We propose a type of wave function asymptotically satisfying the operator of initial conditions and still admitting analytic integration of the nonstationary Schrödinger equation. The solution demonstrates that for certain perturbation phases determined by the forcing frequency and the initial indeterminacy of the coordinate, the wave-packet center temporarily stabilizes near the potential maximum for approximately two "natural periods" of the oscillator and then moves to infinity with bifurcations in the drift direction. The effect is not masked by packet spreading, because the packet undergoes anomalous narrowing (collapse) to a size of the order of the characteristic length on the above time interval and its unbounded spreading begins only after this.
Keywords: inverted quantum oscillator, limit cycle, nonstationary Schrödinger equation, generalized Gaussian type, collapse, dynamical stabilization
Mots-clés : periodic perturbation, bifurcation.
@article{TMF_2019_198_1_a1,
     author = {V. V. Chistyakov},
     title = {Quantum analogue of unstable limit cycles of a~periodically perturbed inverted oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {19--31},
     year = {2019},
     volume = {198},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/}
}
TY  - JOUR
AU  - V. V. Chistyakov
TI  - Quantum analogue of unstable limit cycles of a periodically perturbed inverted oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 19
EP  - 31
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/
LA  - ru
ID  - TMF_2019_198_1_a1
ER  - 
%0 Journal Article
%A V. V. Chistyakov
%T Quantum analogue of unstable limit cycles of a periodically perturbed inverted oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 19-31
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/
%G ru
%F TMF_2019_198_1_a1
V. V. Chistyakov. Quantum analogue of unstable limit cycles of a periodically perturbed inverted oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/

[1] G. Barton, “Quantum mechanics of the inverted oscillator potential”, Ann. Phys., 166:2 (1986), 322–363 | DOI | MR

[2] S. Baskoutas, A. Jannussistl, R. Mignanig, “Dissipative tunnelling of the inverted Caldirola–Kanai oscillator”, J. Phys. A: Math. Gen., 27:6 (1994), 2189–2196 | DOI | MR

[3] Sh. Matsumoto, M. Yoshimura, “Dynamics of barrier penetration in thermal medium: exact result for inverted harmonic oscillator”, Phys. Rev. A, 63:1 (2000), 012104, 15 pp. | DOI

[4] B. N. Zakharev, “Diskretnaya i nepreryvnaya kvantovaya mekhanika, tochno reshaemye modeli (Uroki kvantovoi intuitsii II)”, EChAYa, 23:5 (1992), 1387–1468

[5] C. A. Muñoz, J. Rueda-Paz, K. B. Wolf, “Discrete repulsive oscillator wavefunctions”, J. Phys. A: Math. Theor., 42:48 (2009), 485210, 14 pp. | DOI

[6] M. Maamache, J. R. Choi, “Quantum-classical correspondence for the inverted oscillator”, Chinese Phys. C, 41:11 (2017), 113106, 7 pp. | DOI

[7] P. Duclosi, E. Soccorsi, P. Šťovíček, M. Vittot, “On the stability of periodically time-dependent quantum systems”, Rev. Math. Phys., 20:6 (2008), 725–764 | DOI

[8] Y. Nogami, F. M. Toyama, “Nonlinear Schrödinger soliton in a time-dependent quadratic potential”, Phys. Rev. E, 49:5 (1994), 4497–4501 | DOI

[9] G.-J. Guo, Z.-Z. Ren, G.-X. Ju, X.-Y. Guo, “Quantum tunneling effect of a driven inverted harmonic oscillator”, J. Phys. A: Math. Theor., 44:30 (2011), 305301, 16 pp. | DOI | MR

[10] V. G. Bagrov, D. M. Gitman, E. S. Macedo, A. S. Pereira, “Coherent states of inverse oscillators and related problems”, J. Phys. A: Math. Theor., 46:32 (2013), 325305, 13 pp. | DOI