Mots-clés : periodic perturbation, bifurcation.
@article{TMF_2019_198_1_a1,
author = {V. V. Chistyakov},
title = {Quantum analogue of unstable limit cycles of a~periodically perturbed inverted oscillator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {19--31},
year = {2019},
volume = {198},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/}
}
TY - JOUR AU - V. V. Chistyakov TI - Quantum analogue of unstable limit cycles of a periodically perturbed inverted oscillator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 19 EP - 31 VL - 198 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/ LA - ru ID - TMF_2019_198_1_a1 ER -
V. V. Chistyakov. Quantum analogue of unstable limit cycles of a periodically perturbed inverted oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 19-31. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a1/
[1] G. Barton, “Quantum mechanics of the inverted oscillator potential”, Ann. Phys., 166:2 (1986), 322–363 | DOI | MR
[2] S. Baskoutas, A. Jannussistl, R. Mignanig, “Dissipative tunnelling of the inverted Caldirola–Kanai oscillator”, J. Phys. A: Math. Gen., 27:6 (1994), 2189–2196 | DOI | MR
[3] Sh. Matsumoto, M. Yoshimura, “Dynamics of barrier penetration in thermal medium: exact result for inverted harmonic oscillator”, Phys. Rev. A, 63:1 (2000), 012104, 15 pp. | DOI
[4] B. N. Zakharev, “Diskretnaya i nepreryvnaya kvantovaya mekhanika, tochno reshaemye modeli (Uroki kvantovoi intuitsii II)”, EChAYa, 23:5 (1992), 1387–1468
[5] C. A. Muñoz, J. Rueda-Paz, K. B. Wolf, “Discrete repulsive oscillator wavefunctions”, J. Phys. A: Math. Theor., 42:48 (2009), 485210, 14 pp. | DOI
[6] M. Maamache, J. R. Choi, “Quantum-classical correspondence for the inverted oscillator”, Chinese Phys. C, 41:11 (2017), 113106, 7 pp. | DOI
[7] P. Duclosi, E. Soccorsi, P. Šťovíček, M. Vittot, “On the stability of periodically time-dependent quantum systems”, Rev. Math. Phys., 20:6 (2008), 725–764 | DOI
[8] Y. Nogami, F. M. Toyama, “Nonlinear Schrödinger soliton in a time-dependent quadratic potential”, Phys. Rev. E, 49:5 (1994), 4497–4501 | DOI
[9] G.-J. Guo, Z.-Z. Ren, G.-X. Ju, X.-Y. Guo, “Quantum tunneling effect of a driven inverted harmonic oscillator”, J. Phys. A: Math. Theor., 44:30 (2011), 305301, 16 pp. | DOI | MR
[10] V. G. Bagrov, D. M. Gitman, E. S. Macedo, A. S. Pereira, “Coherent states of inverse oscillators and related problems”, J. Phys. A: Math. Theor., 46:32 (2013), 325305, 13 pp. | DOI