@article{TMF_2019_198_1_a0,
author = {\v{C}. Burd{\'\i}k and O. Navr\'atil},
title = {Nested {Bethe} ansatz for {the~RTT} algebra of $sp(4)$ type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--18},
year = {2019},
volume = {198},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a0/}
}
Č. Burdík; O. Navrátil. Nested Bethe ansatz for the RTT algebra of $sp(4)$ type. Teoretičeskaâ i matematičeskaâ fizika, Tome 198 (2019) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/TMF_2019_198_1_a0/
[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR
[2] P. P. Kulish, N. Yu. Reshetikhin, “Diagonalization of $GL(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 16:16 (1983), L591–L596 | DOI | MR
[3] S. Belliard, E. Ragoucy, “Nested Bethe ansatz for “all” closed spin chain”, J. Phys. A: Math. Theor., 41:29 (2008), 295202, 33 pp., arXiv: 0804.2822 | DOI | MR
[4] N. Yu. Reshetikhin, “Integriruemye modeli kvantovykh odnomernykh magnetikov s $O(n)$- i $Sp(2k)$-simmetriei”, TMF, 63:3 (1985), 347–366 | DOI | MR
[5] N. Yu. Reshetikhin, “Algebraicheskii anzats Bete dlya $SO(N)$-invariantnykh transfer-matrits”, Zap. nauchn. sem. LOMI, 169 (1988), 122–140 | Zbl
[6] M. J. Martins, P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models”, Nucl. Phys. B, 500:1–3 (1997), 579–620, arXiv: hep-th/9703023 | DOI
[7] Č. Burdík, O. Navrátil, Nested Bethe ansatz for RTT-algebra of $sp(4)$ type, arXiv: 1708.05633