Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 464-474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of us previously obtained and integrated the first examples of two-dimensional Schrödinger equations with a magnetic field belonging to the class of quasi–exactly solvable problems. It was shown that the wave functions are expressed in terms of degenerations of the Heun function: biconfluent and confluent Heun functions. Algebraic conditions were also found that determine the discrete spectrum and wave functions. Our goal here is to solve these algebraic equations numerically. In some cases, we can find an analytic approximation of the discrete spectrum.
Keywords: quantum mechanics, Heun function, quasi–exactly solvable problem.
@article{TMF_2018_197_3_a8,
     author = {A. V. Marikhina and V. G. Marikhin},
     title = {Calculation of the~discrete spectrum of some two-dimensional {Schr\"odinger} equations with a~magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {464--474},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/}
}
TY  - JOUR
AU  - A. V. Marikhina
AU  - V. G. Marikhin
TI  - Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 464
EP  - 474
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/
LA  - ru
ID  - TMF_2018_197_3_a8
ER  - 
%0 Journal Article
%A A. V. Marikhina
%A V. G. Marikhin
%T Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 464-474
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/
%G ru
%F TMF_2018_197_3_a8
A. V. Marikhina; V. G. Marikhin. Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 464-474. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/

[1] M. Planck, “Über eine Verbesserung der Wienschen Spectralgleichung”, Verhandl. Dtsc. Phys. Ges., 2 (1900), 202–204

[2] E. Schrödinger, “Quantisierung als Eigenwertproblem”, Ann. Phys., 384:4 (1926), 361–376 | DOI

[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | MR

[4] V. G. Marikhin, “Two new integrable cases of two-dimensional quantum mechanics with a magnetic field”, Pisma v ZhETF, 103:7 (2016), 552–556 | DOI | DOI

[5] A. Turbiner, “Quasi-exactly-solvable problems and ${\rm sl}(2)$ algebra”, Commun. Math. Phys., 118 (1988), 467 | DOI | MR

[6] A. G. Ushveridze, “Kvazitochnoreshaemye modeli v kvantovoi mekhanike”, EChAYa, 20:5 (1989), 1185–1245 | MR

[7] A. M. Ishkhanyan, “Exact solution of the Schrödinger equation for the inverse square root potential $V_0/\sqrt{x}\,$”, Europhys. Lett., 112:1 (2015), 10006, 6 pp. | DOI

[8] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, New York, 1995 | MR | Zbl