@article{TMF_2018_197_3_a8,
author = {A. V. Marikhina and V. G. Marikhin},
title = {Calculation of the~discrete spectrum of some two-dimensional {Schr\"odinger} equations with a~magnetic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {464--474},
year = {2018},
volume = {197},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/}
}
TY - JOUR AU - A. V. Marikhina AU - V. G. Marikhin TI - Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 464 EP - 474 VL - 197 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/ LA - ru ID - TMF_2018_197_3_a8 ER -
%0 Journal Article %A A. V. Marikhina %A V. G. Marikhin %T Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 464-474 %V 197 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/ %G ru %F TMF_2018_197_3_a8
A. V. Marikhina; V. G. Marikhin. Calculation of the discrete spectrum of some two-dimensional Schrödinger equations with a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 464-474. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a8/
[1] M. Planck, “Über eine Verbesserung der Wienschen Spectralgleichung”, Verhandl. Dtsc. Phys. Ges., 2 (1900), 202–204
[2] E. Schrödinger, “Quantisierung als Eigenwertproblem”, Ann. Phys., 384:4 (1926), 361–376 | DOI
[3] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | MR
[4] V. G. Marikhin, “Two new integrable cases of two-dimensional quantum mechanics with a magnetic field”, Pisma v ZhETF, 103:7 (2016), 552–556 | DOI | DOI
[5] A. Turbiner, “Quasi-exactly-solvable problems and ${\rm sl}(2)$ algebra”, Commun. Math. Phys., 118 (1988), 467 | DOI | MR
[6] A. G. Ushveridze, “Kvazitochnoreshaemye modeli v kvantovoi mekhanike”, EChAYa, 20:5 (1989), 1185–1245 | MR
[7] A. M. Ishkhanyan, “Exact solution of the Schrödinger equation for the inverse square root potential $V_0/\sqrt{x}\,$”, Europhys. Lett., 112:1 (2015), 10006, 6 pp. | DOI
[8] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, New York, 1995 | MR | Zbl