@article{TMF_2018_197_3_a7,
author = {A. K. Pogrebkov},
title = {Higher {Hirota} difference equations and their reductions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {444--463},
year = {2018},
volume = {197},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a7/}
}
A. K. Pogrebkov. Higher Hirota difference equations and their reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 444-463. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a7/
[1] R. Hirota, “Nonlinear partial difference equations. II. Discrete-time Toda equations”, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR
[2] R. Hirota, “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR
[3] T. Miwa, “On Hirota's difference equation”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI
[4] L. V. Bogdanov, B. G. Konopelchenko, “Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy”, J. Math. Phys., 39:9 (1998), 4683–4700 ; “Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies”, 4701–4728 | DOI | MR | DOI | MR
[5] A. V. Zabrodin, “Raznostnye uravneniya Khiroty”, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR
[6] A. V. Zabrodin, “Preobrazovaniya Beklunda dlya raznostnogo uravneniya Khiroty i supersimmetrichnyi anzats Bete”, TMF, 155:1 (2008), 74–93, arXiv: 0705.4006 | DOI | DOI | MR | Zbl
[7] S. Saito, “Octahedral structure of the Hirota–Miwa equation”, J. Nonlinear Math. Phys., 19:4 (2012), 1250032, 12 pp. | DOI | MR
[8] J. J. C. Nimmo, “On a non-Abelian Hirota–Miwa equation”, J. Phys. A: Math. Gen., 39:18 (2006), 5053–5065 | DOI | MR
[9] C. R. Gibson, J. J. C. Nimmo, Y. Ohta, “Quazideterminant solutions of a non-Abelian Hirota–Miwa equation”, J. Phys. A: Math. Theor., 40:42 (2007), 12607–12617, arXiv: nlin/0702020 | DOI | MR
[10] A. Doliwa, “The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system”, Phys. Lett. A, 375:9 (2011), 1219–1224, arXiv: 1006.3380 | DOI | MR
[11] I. Krichever, P. Wiegmann, A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2 (1998), 373–396, arXiv: \href{http://arxiv.org/abs/hep-th/9704090}hep-th/9704090 | DOI | MR
[12] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh i integriruemost nelineinykh evolyutsionnykh uravnenii”, TMF, 154:3 (2008), 477–491 | DOI | DOI | MR | Zbl
[13] A. K. Pogrebkov, “Hirota difference equation and a commutator identity on an associative algebra”, Algebra i analiz, 22:3 (2010), 191–205 | DOI | MR | Zbl
[14] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh, raznostnoe neabelevo uravnenie Khiroty i ego reduktsii”, TMF, 187:3 (2016), 433–446 | DOI | DOI | MR
[15] V. E. Zakharov, E. I. Schulman, “Degenerative dispersion laws, motion invariants and kinetic equations”, Phys. D, 1:2 (1980), 192–202 | DOI | MR
[16] A. K. Pogrebkov, “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's Seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 261–270 | MR
[17] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, G. R. W. Quispel, “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105:6 (1984), 267–272 | DOI | MR
[18] F. Nijhoff, H. Capel, “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR
[19] S. Konstantinou-Rizos, T. E. Kouloukas, “A noncommutative discrete potential KdV lift”, J. Math. Phys., 59:6 (2018), 063506, 13 pp. | DOI | MR
[20] A. K. Pogrebkov, “Symmetries of the Hirota difference equation”, SIGMA, 13 (2017), 053, 14 pp. | DOI | MR
[21] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl