Higher Hirota difference equations and their reductions
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 444-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We previously proposed an approach for constructing integrable equations based on the dynamics in associative algebras given by commutator relations. In the framework of this approach, evolution equations determined by commutators of (or similarity transformations with) functions of the same operator are compatible by construction. Linear equations consequently arise, giving a base for constructing nonlinear integrable equations together with the corresponding Lax pairs using a special dressing procedure. We propose an extension of this approach based on introducing higher analogues of the famous Hirota difference equation. We also consider some $(1+1)$-dimensional discrete integrable equations that arise as reductions of either the Hirota difference equation itself or a higher equation in its hierarchy.
Keywords: integrability, commutator identity, Hirota difference equation, higher integrable equation, reduction.
@article{TMF_2018_197_3_a7,
     author = {A. K. Pogrebkov},
     title = {Higher {Hirota} difference equations and their reductions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--463},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a7/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Higher Hirota difference equations and their reductions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 444
EP  - 463
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a7/
LA  - ru
ID  - TMF_2018_197_3_a7
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Higher Hirota difference equations and their reductions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 444-463
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a7/
%G ru
%F TMF_2018_197_3_a7
A. K. Pogrebkov. Higher Hirota difference equations and their reductions. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 444-463. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a7/

[1] R. Hirota, “Nonlinear partial difference equations. II. Discrete-time Toda equations”, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR

[2] R. Hirota, “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[3] T. Miwa, “On Hirota's difference equation”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI

[4] L. V. Bogdanov, B. G. Konopelchenko, “Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy”, J. Math. Phys., 39:9 (1998), 4683–4700 ; “Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies”, 4701–4728 | DOI | MR | DOI | MR

[5] A. V. Zabrodin, “Raznostnye uravneniya Khiroty”, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR

[6] A. V. Zabrodin, “Preobrazovaniya Beklunda dlya raznostnogo uravneniya Khiroty i supersimmetrichnyi anzats Bete”, TMF, 155:1 (2008), 74–93, arXiv: 0705.4006 | DOI | DOI | MR | Zbl

[7] S. Saito, “Octahedral structure of the Hirota–Miwa equation”, J. Nonlinear Math. Phys., 19:4 (2012), 1250032, 12 pp. | DOI | MR

[8] J. J. C. Nimmo, “On a non-Abelian Hirota–Miwa equation”, J. Phys. A: Math. Gen., 39:18 (2006), 5053–5065 | DOI | MR

[9] C. R. Gibson, J. J. C. Nimmo, Y. Ohta, “Quazideterminant solutions of a non-Abelian Hirota–Miwa equation”, J. Phys. A: Math. Theor., 40:42 (2007), 12607–12617, arXiv: nlin/0702020 | DOI | MR

[10] A. Doliwa, “The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota–Miwa system”, Phys. Lett. A, 375:9 (2011), 1219–1224, arXiv: 1006.3380 | DOI | MR

[11] I. Krichever, P. Wiegmann, A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2 (1998), 373–396, arXiv: \href{http://arxiv.org/abs/hep-th/9704090}hep-th/9704090 | DOI | MR

[12] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh i integriruemost nelineinykh evolyutsionnykh uravnenii”, TMF, 154:3 (2008), 477–491 | DOI | DOI | MR | Zbl

[13] A. K. Pogrebkov, “Hirota difference equation and a commutator identity on an associative algebra”, Algebra i analiz, 22:3 (2010), 191–205 | DOI | MR | Zbl

[14] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh, raznostnoe neabelevo uravnenie Khiroty i ego reduktsii”, TMF, 187:3 (2016), 433–446 | DOI | DOI | MR

[15] V. E. Zakharov, E. I. Schulman, “Degenerative dispersion laws, motion invariants and kinetic equations”, Phys. D, 1:2 (1980), 192–202 | DOI | MR

[16] A. K. Pogrebkov, “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's Seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 261–270 | MR

[17] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, G. R. W. Quispel, “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105:6 (1984), 267–272 | DOI | MR

[18] F. Nijhoff, H. Capel, “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR

[19] S. Konstantinou-Rizos, T. E. Kouloukas, “A noncommutative discrete potential KdV lift”, J. Math. Phys., 59:6 (2018), 063506, 13 pp. | DOI | MR

[20] A. K. Pogrebkov, “Symmetries of the Hirota difference equation”, SIGMA, 13 (2017), 053, 14 pp. | DOI | MR

[21] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl