Calogero--Moser model and $R$-matrix identities
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 417-434
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss properties of $R$-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of $R$-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation.
Keywords:
elliptic integrable system, long-range spin chain, associative Yang–Baxter equation.
@article{TMF_2018_197_3_a5,
author = {A. V. Zotov},
title = {Calogero--Moser model and $R$-matrix identities},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {417--434},
publisher = {mathdoc},
volume = {197},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a5/}
}
A. V. Zotov. Calogero--Moser model and $R$-matrix identities. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 417-434. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a5/