Calogero–Moser model and $R$-matrix identities
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 417-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss properties of $R$-matrix-valued Lax pairs for the elliptic Calogero-Moser model. In particular, we show that the family of Hamiltonians arising from this Lax representation contains only known Hamiltonians and no others. We review the relation of $R$-matrix-valued Lax pairs to Hitchin systems on bundles with nontrivial characteristic classes over elliptic curves and also to quantum long-range spin chains. We prove a general higher-order identity for solutions of the associative Yang–Baxter equation.
Keywords: elliptic integrable system, long-range spin chain, associative Yang–Baxter equation.
@article{TMF_2018_197_3_a5,
     author = {A. V. Zotov},
     title = {Calogero{\textendash}Moser model and $R$-matrix identities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--434},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a5/}
}
TY  - JOUR
AU  - A. V. Zotov
TI  - Calogero–Moser model and $R$-matrix identities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 417
EP  - 434
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a5/
LA  - ru
ID  - TMF_2018_197_3_a5
ER  - 
%0 Journal Article
%A A. V. Zotov
%T Calogero–Moser model and $R$-matrix identities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 417-434
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a5/
%G ru
%F TMF_2018_197_3_a5
A. V. Zotov. Calogero–Moser model and $R$-matrix identities. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 417-434. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a5/

[1] S. Fomin, A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progress in Mathematics, 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser, Boston, MA, 1999, 147–182 ; M. Aguiar, “Infinitesimal Hopf algebras”, New Trends in Hopf Algebra Theory, Contemporary Mathematics, 267, eds. N. Andruskiewitsch, W. R. F. Santos, AMS, Providence, RI, 2000, 1–29 | MR | DOI | MR

[2] A. Polishchuk, “Classical Yang–Baxter equation and the $A^\infty$-constraint”, Adv. Math., 168:1 (2002), 56–95 | DOI | MR

[3] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 ; A. A. Belavin, “Dynamical symmetry of integrable quantum systems”, Nucl. Phys. B, 180:2 (1981), 189–200 | DOI | MR | DOI | MR

[4] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, M., 1978 ; Д. Мамфорд, Лекции о тэта-функциях, Мир, М., 1988 | MR | MR

[5] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin, 1973 | DOI | MR

[6] V. V. Bazhanov, Y. G. Stroganov, “On connection between the solutions of the quantum and classical triangle equations”, Problemy fiziki vysokikh energii i kvantovoi teorii polya, Trudy VI Mezhdunarodnogo seminara po problemam fiziki vysokikh energii i kvantovoi teorii polya (Protvino, iyul 1983\;g.), v. 1, IFVE, Protvino, 1983, 52–54; Л. А. Тахтаджян, “Решения уравнений треугольников с $\mathbb Z_n\times\mathbb Z_n$-симметрией как матричные аналоги дзета- и сигма-функций Вейерштрасса”, Зап. научн. сем. ЛОМИ, 133 (1984), 258–276 | MR | Zbl

[7] A. Levin, M. Olshanetsky, A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations”, JHEP, 10 (2014), 109, 28 pp., arXiv: 1408.6246 | DOI | MR

[8] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, “Kvantovye $R$-matritsy Bakstera–Belavina i mnogomernye pary Laksa dlya uravneniya Penleve VI”, TMF, 184:1 (2015), 41–56 | DOI | DOI | MR

[9] A. Levin, M. Olshanetsky, A. Zotov, “Yang–Baxter equations with two Planck constants”, J. Phys. A: Math. Theor., 49:1 (2016), 014003, 19 pp., arXiv: 1507.02617 | DOI | MR

[10] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR

[11] F. Calogero, “Solution of a three-body problem in one dimension”, J. Math. Phys., 10:12 (1969), 2191–2196 ; J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 ; M. A. Olshanetsky, A. M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras”, Invent. Math., 37:2 (1976), 93–108 | DOI | DOI | MR | DOI | MR

[12] K. Hikami, M. Wadati, “Integrable spin-1/2 particle systems with long-range interactions”, Phys. Lett. A, 173:3 (1993), 263–266 | DOI | MR

[13] V. I. Inozemtsev, R. Sasaki, “Universal Lax pairs for spin Calogero–Moser models and spin exchange models”, J. Phys. A: Math. Gen., 34:37 (2001), 7621–7632, arXiv: hep-th/0105164 | DOI | MR

[14] V. I. Inozemtsev, “On the connection between the one-dimensional $S=1/2$ Heisenberg chain and Haldane–Shastry model”, J. Statist. Phys., 59:5–6 (1990), 143–1155 | DOI | MR

[15] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl

[16] A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A: Math. Theor., 51:31 (2018), 315202, 26 pp., arXiv: 1801.00245 | DOI

[17] A. V. Zotov, “Starshie analogi usloviya unitarnosti dlya kvantovykh $R$-matrits”, TMF, 189:2 (2016), 176–185, arXiv: 1511.02468 | DOI | DOI | MR

[18] B. Sutherland, “Exact results for a quantum many-body problem in one dimension”, Phys. Rev. A, 4:5 (1971), 2019–2021 ; “Exact results for a quantum many-body problem in one dimension. II”, 5:3 (1972), 1372–1376 ; M. A. Olshanetsky, A. M. Perelomov, “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94:6 (1983), 313–404 ; I. Cherednik, “Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations”, Adv. Math., 106:1 (1994), 65–95 | DOI | DOI | DOI | MR | DOI | MR

[19] K. Hikami, M. Wadati, “Integrability of Calogero–Moser spin system”, J. Phys. Soc. Japan, 62:2 (1993), 469–472 | DOI | MR

[20] J. Gibbons, T. Hermsen, “A generalization of the Calogero–Moser systems”, Phys. D, 11:3 (1984), 337–348 ; S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system”, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR | DOI | MR

[21] A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting tops” (to appear)

[22] E. Billey, J. Avan, O. Babelon, “The $r$-matrix structure of the Euler–Calogero–Moser model”, Phys. Lett. A, 186:1–2 (1994), 114–118, arXiv: hep-th/9312042 | DOI

[23] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl

[24] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl

[25] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 38 pp., arXiv: 1405.7523 | DOI

[26] A. Levin, M. Olshanetsky, A. Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A: Math. Theor., 49:39 (2016), 395202, 24 pp., arXiv: 1603.06101 | DOI | MR

[27] A. P. Polychronakos, “Calogero–Moser models with noncommutative spin interactions”, Phys. Rev. Lett., 89:12 (2002), 126403, 4 pp., arXiv: ; “Generalized Calogero models through reductions by discrete symmetries”, Nucl. Phys. B, 543:1–2 (1999), 485–498, arXiv: ; “The physics and mathematics of Calogero particles”, J. Phys. A: Math. Gen., 39:41 (2006), 12793–12845, arXiv: hep-th/0112141hep-th/9810211hep-th/0607033 | DOI | DOI | MR | DOI

[28] A. V. Zotov, A. M. Levin, “Integriruemaya sistema vzaimodeistvuyuschikh ellipticheskikh volchkov”, TMF, 146:1 (2006), 55–64 ; А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 | DOI | DOI | MR | Zbl | DOI | DOI | MR | Zbl

[29] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb{C})$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201, 25 pp., arXiv: 1208.5750 | DOI | MR

[30] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes and Hitchin systems. General construction”, Commun. Math. Phys., 316:1 (2012), 1–44, arXiv: 1006.0702 | DOI | MR

[31] A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169, 22 pp., arXiv: 1706.05601 | DOI | MR

[32] F. D. M. Haldane, “Exact Jastrow–Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with $1/r^2$ exchange”, Phys. Rev. Lett., 60:7 (1988), 635–638 | DOI

[33] A. P. Polychronakos, “Lattice integrable systems of Haldane–Shastry type”, Phys. Rev. Lett., 70:15 (1993), 2329–2331, arXiv: hep-th/9210109 | DOI

[34] I. Sechin, A. Zotov, “$R$-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7, arXiv: 1801.08908 | DOI | MR

[35] D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, “Yang–Baxter equation in long-range interacting systems”, J. Phys. A: Math. Gen., 26:20 (1993), 5219–5236 | DOI | MR

[36] A. Grekov, I. Sechin, A. Zotov, “Interacting integrable tops and long range spin chains” (to appear)