Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 397-416
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate some well-known variable-coefficient time-fractional nonlinear systems of partial differential equations using the Lie symmetry method and derive their symmetries and reductions into fractional nonlinear systems of ordinary differential equations.
Keywords:
symmetry analysis, time-fractional nonlinear systems, variable-coefficient partial differential equations, Erdélyi–Kober operators.
@article{TMF_2018_197_3_a4,
author = {R. K. Gupta and K. Singla},
title = {Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {397--416},
publisher = {mathdoc},
volume = {197},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/}
}
TY - JOUR AU - R. K. Gupta AU - K. Singla TI - Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 397 EP - 416 VL - 197 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/ LA - ru ID - TMF_2018_197_3_a4 ER -
%0 Journal Article %A R. K. Gupta %A K. Singla %T Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 397-416 %V 197 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/ %G ru %F TMF_2018_197_3_a4
R. K. Gupta; K. Singla. Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 397-416. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/