Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 397-416

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate some well-known variable-coefficient time-fractional nonlinear systems of partial differential equations using the Lie symmetry method and derive their symmetries and reductions into fractional nonlinear systems of ordinary differential equations.
Keywords: symmetry analysis, time-fractional nonlinear systems, variable-coefficient partial differential equations, Erdélyi–Kober operators.
@article{TMF_2018_197_3_a4,
     author = {R. K. Gupta and K. Singla},
     title = {Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {397--416},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/}
}
TY  - JOUR
AU  - R. K. Gupta
AU  - K. Singla
TI  - Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 397
EP  - 416
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/
LA  - ru
ID  - TMF_2018_197_3_a4
ER  - 
%0 Journal Article
%A R. K. Gupta
%A K. Singla
%T Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 397-416
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/
%G ru
%F TMF_2018_197_3_a4
R. K. Gupta; K. Singla. Symmetry analysis of variable-coefficient time-fractional nonlinear systems of partial differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 397-416. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a4/