The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 385-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the topology of isoenergetic surfaces for an integrable system on the Lie algebra $so(3,1)$ and the critical points of the Hamiltonian for different parameter values. We construct bifurcation values of the Hamiltonian.
Keywords: topology, integrable Hamiltonian system, isoenergetic surface, critical set, bifurcation diagram.
@article{TMF_2018_197_3_a3,
     author = {R. Akbarzadeh},
     title = {The~topology of isoenergetic surfaces for {the~Borisov{\textendash}Mamaev{\textendash}Sokolov} integrable case on {the~Lie} algebra $so(3,1)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {385--396},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/}
}
TY  - JOUR
AU  - R. Akbarzadeh
TI  - The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 385
EP  - 396
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/
LA  - ru
ID  - TMF_2018_197_3_a3
ER  - 
%0 Journal Article
%A R. Akbarzadeh
%T The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 385-396
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/
%G ru
%F TMF_2018_197_3_a3
R. Akbarzadeh. The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 385-396. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/

[1] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 1–35 | MR

[2] A. T. Fomenko, “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[3] A. T. Fomenko, “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | DOI | MR | Zbl

[4] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izd-vo Udmurt. gos. un-ta, Izhevsk, 1999 | MR | Zbl

[5] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 67–146 | MR

[6] V. V. Sokolov, “Ob odnom klasse kvadratichnykh gamiltonianov na $so(4)$”, Dokl. RAN, 394:5 (2004), 602–605 | MR | Zbl

[7] V. V. Sokolov, “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, TMF, 129:1 (2001), 31–37 | DOI | DOI | MR | Zbl

[8] A. V. Borisov, I. S. Mamaev, V. V. Sokolov, “Novyi integriruemyi sluchai na $so(4)$”, Dokl. RAN, 381:5 (2001), 614–615 | MR

[9] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, RKhD, Izhevsk, 2001 | MR

[10] D. V. Novikov, “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li $\mathrm{e}(3)$”, Matem. sb., 202:5 (2011), 127–160 | DOI | DOI | MR | Zbl

[11] D. V. Novikov, “Topologiya izoenergeticheskikh poverkhnostei dlya integriruemogo sluchaya Sokolova na algebre Li $so(3,1)$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 66:4 (2011), 62–64 | DOI

[12] R. Akbarzadeh, G. Haghighatdoost, “The topology of Liouville foliation for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(4)$”, Regul. Chaotic Dyn., 20:3 (2015), 317–344 | DOI | MR | Zbl

[13] R. Akbarzadeh, “Topological analysis corresponding to the Borisov–Mamaev–Sokolov integrable system on the Lie algebra $so(4)$”, Regul. Chaotic Dyn., 21:1 (2016), 1–17 | DOI | MR | Zbl

[14] S. Smale, “Topology and mechanics I”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR

[15] Ya. V. Tatarinov, “Uravneniya klassicheskoi mekhaniki v novoi forme”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 58:3 (2003), 67–76 | MR | Zbl

[16] P. E. Ryabov, “Bifurkatsii pervykh integralov v sluchae Sokolova”, TMF, 134:2 (2003), 207–226 | DOI | DOI | MR | Zbl