@article{TMF_2018_197_3_a3,
author = {R. Akbarzadeh},
title = {The~topology of isoenergetic surfaces for {the~Borisov{\textendash}Mamaev{\textendash}Sokolov} integrable case on {the~Lie} algebra $so(3,1)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {385--396},
year = {2018},
volume = {197},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/}
}
TY - JOUR AU - R. Akbarzadeh TI - The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 385 EP - 396 VL - 197 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/ LA - ru ID - TMF_2018_197_3_a3 ER -
%0 Journal Article %A R. Akbarzadeh %T The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$ %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 385-396 %V 197 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/ %G ru %F TMF_2018_197_3_a3
R. Akbarzadeh. The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 385-396. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a3/
[1] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 1–35 | MR
[2] A. T. Fomenko, “Teoriya Morsa integriruemykh gamiltonovykh sistem”, Dokl. AN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl
[3] A. T. Fomenko, “Topologicheskie invarianty gamiltonovykh sistem, integriruemykh po Liuvillyu”, Funkts. analiz i ego pril., 22:4 (1988), 38–51 | DOI | MR | Zbl
[4] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izd-vo Udmurt. gos. un-ta, Izhevsk, 1999 | MR | Zbl
[5] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 67–146 | MR
[6] V. V. Sokolov, “Ob odnom klasse kvadratichnykh gamiltonianov na $so(4)$”, Dokl. RAN, 394:5 (2004), 602–605 | MR | Zbl
[7] V. V. Sokolov, “Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa”, TMF, 129:1 (2001), 31–37 | DOI | DOI | MR | Zbl
[8] A. V. Borisov, I. S. Mamaev, V. V. Sokolov, “Novyi integriruemyi sluchai na $so(4)$”, Dokl. RAN, 381:5 (2001), 614–615 | MR
[9] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, RKhD, Izhevsk, 2001 | MR
[10] D. V. Novikov, “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li $\mathrm{e}(3)$”, Matem. sb., 202:5 (2011), 127–160 | DOI | DOI | MR | Zbl
[11] D. V. Novikov, “Topologiya izoenergeticheskikh poverkhnostei dlya integriruemogo sluchaya Sokolova na algebre Li $so(3,1)$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 66:4 (2011), 62–64 | DOI
[12] R. Akbarzadeh, G. Haghighatdoost, “The topology of Liouville foliation for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(4)$”, Regul. Chaotic Dyn., 20:3 (2015), 317–344 | DOI | MR | Zbl
[13] R. Akbarzadeh, “Topological analysis corresponding to the Borisov–Mamaev–Sokolov integrable system on the Lie algebra $so(4)$”, Regul. Chaotic Dyn., 21:1 (2016), 1–17 | DOI | MR | Zbl
[14] S. Smale, “Topology and mechanics I”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR
[15] Ya. V. Tatarinov, “Uravneniya klassicheskoi mekhaniki v novoi forme”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 58:3 (2003), 67–76 | MR | Zbl
[16] P. E. Ryabov, “Bifurkatsii pervykh integralov v sluchae Sokolova”, TMF, 134:2 (2003), 207–226 | DOI | DOI | MR | Zbl