Projective synchronization of piecewise nonlinear chaotic maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 530-540
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With wide applications in secure data transmission and encryption, synchronization of chaotic systems is an interesting concept and has accordingly received special attention among nonlinear systems. Here, we propose an appropriate controller for synchronizing one-parameter families of piecewise nonlinear chaotic maps using a projective synchronization method. First, we present synchronization in coupled chaos discrete-time systems using the master–slave method. Using the principle of the stability of the Lyapunov function, we design a proper controller for achieving projective synchronization of piecewise nonlinear systems. Finally, we demonstrate the applicability of the proposed scheme with simulation results.
Keywords: projective synchronization, piecewise, chaotic map, Lyapunov function, slave–master method.
@article{TMF_2018_197_3_a13,
     author = {S. Ahadpour and A. Nemati and F. Mirmasoudi and N. Hematpour},
     title = {Projective synchronization of piecewise nonlinear chaotic maps},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {530--540},
     year = {2018},
     volume = {197},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a13/}
}
TY  - JOUR
AU  - S. Ahadpour
AU  - A. Nemati
AU  - F. Mirmasoudi
AU  - N. Hematpour
TI  - Projective synchronization of piecewise nonlinear chaotic maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 530
EP  - 540
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a13/
LA  - ru
ID  - TMF_2018_197_3_a13
ER  - 
%0 Journal Article
%A S. Ahadpour
%A A. Nemati
%A F. Mirmasoudi
%A N. Hematpour
%T Projective synchronization of piecewise nonlinear chaotic maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 530-540
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a13/
%G ru
%F TMF_2018_197_3_a13
S. Ahadpour; A. Nemati; F. Mirmasoudi; N. Hematpour. Projective synchronization of piecewise nonlinear chaotic maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 530-540. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a13/

[1] J. Sun, Y. Shen, X. Zhang, “Modified projective and modified function projective synchronization of a class of real nonlinear systems and a class of complex nonlinear systems”, Nonlinear Dyn., 78:3 (2014), 1755–1764 | DOI | MR

[2] L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems”, Phys. Rev. Lett., 64:8 (1990), 821–824 | DOI | MR

[3] H.-T. Yau, “Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs”, Nonlinear Anal.: Real World Appl., 9:5 (2008), 2253–2261 | DOI | MR

[4] H. N. Agiza, “Chaos synchronazation of Lü dynamical system”, Nonlinear Anal.: Theory, Methods Appl., 58:1–2 (2004), 11–20 | DOI | MR

[5] X. Wu, J. Wang, “Adaptive generalized function projective synchronization of uncertain chaotic complex systems”, Nonlinear Dyn., 73:3 (2013), 1455–1467 | DOI | MR

[6] N. F. Rolkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems”, Phys. Rev. E, 51:2 (1995), 980–994 | DOI

[7] H. Dai, G. Si, Y. Zhang, “Adaptive generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimensions”, Nonlinear Dyn., 74:3 (2013), 629–648 | DOI | MR

[8] L. Lu, C. Li, “Generalized synchronization of spatiotemporal chaos in a weighted complex network”, Nonlinear Dyn., 63:4 (2011), 699–710 | DOI

[9] D. Ghosh, “Nonlinear active observer-based generalized synchronization in time-delayed systems”, Nonlinear Dyn., 59:1–2 (2010), 289–296 | DOI | MR

[10] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, “Phase synchronization of chaotic oscillators”, Phys. Rev. Lett., 76:11 (1996), 1804–1807 | DOI

[11] S. K. Bhowmick, P. Pal, P. K. Roy, S. K. Dana, “Lag synchronization and scaling of chaotic attractor in coupled system”, Chaos, 22:2 (2012), 023151, 8 pp., arXiv: 1206.6723 | DOI | MR

[12] Y. Chen, X. Chen, S. Gu, “Lag synchronization of structurally nonequivalent chaotic systems with time delay”, Nonlinear Anal., 66:9 (2004), 1929–1937 | DOI | MR

[13] Z.-M. Ge, Y.-S. Chen, “Synchronization of unidirectional coupled chaotic systems via partial stability”, Chaos, Solitons Fractals, 21:1 (2004), 101–111 | DOI | MR

[14] R. Mainieri, J. Rehacek, “Projective synchronization in three-dimensional chaotic systems”, Phys. Rev. Lett., 82:15 (1999), 3042–3045 | DOI

[15] C.-M. Chang, H.-K. Chen, “Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen–Lee systems”, Nonlinear Dyn., 62:4 (2010), 851–858 | DOI | MR

[16] Z.-L. Wang, “Projective synchronization of hyperchaotic system and Liu system”, Nonlinear Dyn., 59:3 (2010), 455–462 | DOI | MR

[17] J. Sun, Y. Shen, G. Zhang, “Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control”, Chaos, 22:4 (2012), 043107, 10 pp. | DOI | MR

[18] L. Runzi, “Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters”, Phys. Lett. A., 372:20 (2008), 3667–3671 | DOI | MR

[19] A. E. Hramov, A. A. Koronovskii, “Time scale synchronization of chaotic oscillators”, Phys. D, 206:3–4 (2005), 252–264, arXiv: nlin/0602053 | DOI | MR

[20] J. Sun, Y. Shen, Q. Yin, C. Xu, “Compound synchronization of four memristor chaotic oscillator systems and secure communication”, Chaos, 23:1 (2013), 013140, 10 pp. | DOI | MR

[21] A. Coronel-Escamilla, J. F. Gómez-Aguilar, L. Torres, R. F. Escobar-Jiménez, M. Valtierra-Rodriguez, “Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order”, Phys. A, 487 (2017), 1–21 | DOI | MR

[22] A. Nemati, “Numerical solution of 2D fractional optimal control problems by the spectral method combined with Bernstein operational matrix”, Internat. J. Control, 2017, 1–14 | DOI

[23] H. Ahmed, I. Salgado, H. Rios, “Robust synchronization of master-slave chaotic systems using approximate model: an experimental study”, ISA Trans., 73 (2018), 141–146 | DOI

[24] D. Zhang, J. Mei, P. Miao, “Global finite-time synchronization of different dimensional chaotic systems”, Appl. Math. Model., 48 (2017), 303–315 | DOI | MR

[25] M. A. Jafarizadeh, M. Foroutan, S. Behnia, “Hierarchy of piecewise non-linear maps with non-ergodic behavior”, J. Phys. A: Math. Gen., 37:40 (2004), 9403–9417, arXiv: nlin/0409054 | DOI | MR

[26] N. Masuda, K. Aihara, “Cryptosystems with discretized chaotic maps”, IEEE Trans. Circuits Systems I: Fund. Theory Appl., 49:1 (2002), 28–40 | DOI | MR

[27] H. Zhou, X. Ling, “Generating chaotic secure sequence with desired statistical properties and high security”, Internat. J. Bifur. Chaos, 7:1 (1997), 205–213 | DOI

[28] F. Huang, Z.-H. Guan, “A modified method of a class of recently presented cryptosystems”, Chaos, Solitons and Fractals, 23:5 (2005), 1893–1899 | MR

[29] S. Tao, W. Ruli, Y. Yixun, “The theoretical design for a class of new chaotic feedback stream ciphers”, Acta Eletronica Sinica, 27 (1999), 47–50

[30] A. Baranovsky, D. Daems, “Design of one-dimensional chaotic maps with prescribed statistical properties”, Internat. J. Bifur. Chaos, 5:6 (1995), 1585–1598 | DOI | MR

[31] S. Li, X. Mou, Y. Cai, Z. Ji, J. Zhang, “One the security of a chaotic encryption scheme: problems with computerized chaos”, Comput. Phys. Commun., 153:1 (2003), 52–58 | DOI | MR

[32] A. S. Pikovsky, M. G. Rosenblum, J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR

[33] J. M. V. Grzybowski, M. Rafikov, E. E. N. Macau, “Synchronization analysis for chaotic communication on a satellite formulation flying”, Acta Astronautica, 67:7–8 (2010), 881–891 | DOI

[34] H. G. Enjieu Kadji, J. B. Chabi Orou, R. Yamapi, P. Woafo, “Nonlinear dynamics and strange attractors in the biological system”, Chaos Solitons and Fractals, 32:2 (2007), 862–882 | DOI | MR

[35] A. Nemati, K. Mamehrashi, “The use of the Ritz method and Laplace transform for solving 2D fractional-order optimal control problems described by the Roesser model”, Asian J. Control, 21:4 (2019) (to appear)

[36] A. Benkhassin, “Gamiltonovy sistemy drobnogo poryadka s lokalno zadannymi potentsialami”, TMF, 195:1 (2018), 81–90 | DOI | DOI

[37] S. Das, V. K. Yadav, “Upravlenie khaosom i funktsionalnaya proektivnaya sinkhronizatsiya sistem drobnogo poryadka metodom beksteppinga”, TMF, 189:1 (2016), 36–47 | DOI | DOI | MR

[38] A. Nemati, S. A. Yousefi, “A numerical scheme for solving two-dimensional fractional optimal control problems by the Ritz method combined with fractional operational matrix”, IMA J. Math. Control Inform., 34:4 (2017), 1079–1097 | DOI | MR

[39] L. A. Kalyakin, “Sinkhronizatsiya v neizokhronnoi neavtonomnoi sisteme”, TMF, 181:2 (2014), 243–253 | DOI | DOI | MR

[40] M. A. Jafarizadeh, S. Behnia, S. Khorram, H. Naghshara, “Hierarchy of chaotic maps with an invariant measure”, J. Statist. Phys., 104:5–6 (2001), 1013–1028 | DOI | MR

[41] S. Behnia, A. Akhshani, S. Ahadpour, H. Mahmodi, A. Akhavan, “A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps”, Phys. Lett. A., 366:4–5 (2007), 391–396 | DOI