@article{TMF_2018_197_3_a0,
author = {D. V. Bykov},
title = {The~$1/N$-expansion for flag-manifold $\sigma$-models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {345--355},
year = {2018},
volume = {197},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a0/}
}
D. V. Bykov. The $1/N$-expansion for flag-manifold $\sigma$-models. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 3, pp. 345-355. http://geodesic.mathdoc.fr/item/TMF_2018_197_3_a0/
[1] D. Bykov, “Complex structures and zero-curvature equations for $\sigma$-models”, Phys. Lett. B, 760 (2016), 341–344, arXiv: 1605.01093 | DOI
[2] K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints”, Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR
[3] V. E. Zakharov, A. V. Mikhailov, “Relyativistski invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi”, ZhETF, 74:6 (1978), 1953–1973 | MR
[4] H. Eichenherr, M. Forger, “On the dual symmetry of the non-linear sigma models”, Nucl. Phys. B, 155:2 (1979), 381–393 | DOI | MR
[5] D. V. Bykov, “Kvazilineinaya formulirovka $\sigma$-modeli prostranstva flagov”, TMF, 193:3 (2017), 381–400 | DOI | DOI | MR
[6] E. Cremmer, J. Scherk, “The supersymmetric non-linear $\sigma$-model in four dimensions and its coupling to supergravity”, Phys. Lett. B, 74:4–5 (1978), 341–434 | DOI
[7] A. D'Adda, M. Lüscher, P. Di Vecchia, “A $1/n$ expandable series of non-linear $\sigma$-models with instantons”, Nucl. Phys. B, 146:1 (1978), 63–76 | DOI | MR
[8] R. Donagi, E. Sharpe, “GLSM's for partial flag manifolds”, J. Geom. Phys., 58:12 (2008), 1662–1692 | DOI
[9] D. Bykov, “Integrable properties of $\sigma$-models with non-symmetric target spaces”, Nucl. Phys. B, 894 (2015), 254–267, arXiv: 1412.3746 | DOI | MR
[10] D. Bykov, “Classical solutions of a flag manifold $\sigma$-model”, Nucl. Phys. B, 902 (2016), 292–301, arXiv: 1506.08156 | DOI | MR
[11] A. M. Polyakov, Kalibrovochnye polya i struny, RKhD, Izhevsk, 1999 | MR
[12] A. D'Adda, P. Di Vecchia, M. Lüscher, “Confinement and chiral symmetry breaking in $\mathbb{CP}^{n-1}$ models with quarks”, Nucl. Phys. B, 152:1 (1979), 125–144 | DOI
[13] M. Lüscher, “Quantum nonlocal charges and absence of particle production in the two-dimensional nonlinear sigma model”, Nucl. Phys. B, 135:1 (1978), 1–19 | DOI
[14] Y. Y. Goldschmidt, E. Witten, “Conservation laws in some two-dimensional models”, Phys. Lett. B, 91:3–4 (1980), 392–396 | DOI | MR
[15] E. Abdalla, M. C. B. Abdalla, M. Gomes, “Anomaly in the nonlocal quantum charge of the CP$^{(n-1)}$ model”, Phys. Rev. D, 23:8 (1981), 1800–1805 | DOI
[16] E. Abdalla, M. Gomes, M. Forger, “On the origin of anomalies in the quantum non-local charge for the generalized non-linear sigma models”, Nucl. Phys. B, 210:1 (1982), 181–192 | DOI
[17] E. Abdalla, M. C. B. Abdalla, M. Gomes, “Anomaly cancellations in the supersymmetric $\mathrm{CP}^{n-1}$ model”, Phys. Rev. D, 25:2 (1982), 452–460 | DOI
[18] E. Abdalla, M. C. B. Abdalla, M. Gomes, “On the nonlocal charge of the $\mathrm{CP}^{n-1}$ model and its supersymmetric extension to all orders”, Phys. Rev. D, 27:4 (1983), 825–836 | DOI | MR