Discreteness of dyonic dilaton black holes
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 311-327

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there are two classes of solutions describing static spherically symmetric dyonic dilaton black holes with two nonsingular horizons. The first class includes only the already known solutions that exist for a few special values of the dilaton coupling constant. Solutions in the second class have essentially different properties. They exist for continuously varying values of the dilaton coupling constant but arise only for discrete values of the dilaton field at the horizon. For each given value of the dilaton coupling constant, there can exist several such solutions differing by the number of zeros of the shifted dilaton function in the subhorizon region and separating the domains of singular solutions.
Keywords: dilatonic gravity, nonextremal black hole, self-gravitating dyon.
@article{TMF_2018_197_2_a9,
     author = {E. A. Davydov},
     title = {Discreteness of dyonic dilaton black holes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--327},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/}
}
TY  - JOUR
AU  - E. A. Davydov
TI  - Discreteness of dyonic dilaton black holes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 311
EP  - 327
VL  - 197
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/
LA  - ru
ID  - TMF_2018_197_2_a9
ER  - 
%0 Journal Article
%A E. A. Davydov
%T Discreteness of dyonic dilaton black holes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 311-327
%V 197
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/
%G ru
%F TMF_2018_197_2_a9
E. A. Davydov. Discreteness of dyonic dilaton black holes. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 311-327. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/