Discreteness of dyonic dilaton black holes
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 311-327
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that there are two classes of solutions describing static spherically symmetric dyonic dilaton black holes with two nonsingular horizons. The first class includes only the already known solutions that exist for a few special values of the dilaton coupling constant. Solutions in the second class have essentially different properties. They exist for continuously varying values of the dilaton coupling constant but arise only for discrete values of the dilaton field at the horizon. For each given value of the dilaton coupling constant, there can exist several such solutions differing by the number of zeros of the shifted dilaton function in the subhorizon region and separating the domains of singular solutions.
Keywords: dilatonic gravity, nonextremal black hole, self-gravitating dyon.
@article{TMF_2018_197_2_a9,
     author = {E. A. Davydov},
     title = {Discreteness of dyonic dilaton black holes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {311--327},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/}
}
TY  - JOUR
AU  - E. A. Davydov
TI  - Discreteness of dyonic dilaton black holes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 311
EP  - 327
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/
LA  - ru
ID  - TMF_2018_197_2_a9
ER  - 
%0 Journal Article
%A E. A. Davydov
%T Discreteness of dyonic dilaton black holes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 311-327
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/
%G ru
%F TMF_2018_197_2_a9
E. A. Davydov. Discreteness of dyonic dilaton black holes. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 311-327. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/

[1] G. W. Gibbons, K. Maeda, “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298 (1988), 741–775 | DOI | MR

[2] D. Garfinkle, G. T. Horowitz, A. Strominger, “Charged black holes in string theory”, Phys. Rev. D, 43:10 (1991), 3140–3143 ; Erratum, Phys. Rev. D, 45:10 (1992), 3888 | DOI | MR | DOI

[3] P. Dobiasch, D. Maison, “Stationary, spherically symmetric solutions of Jordan's unified theory of gravity and electromagnetism”, Gen. Rel. Grav., 14:3 (1982), 231–242 | DOI | MR

[4] G. W. Gibbons, “Antigravitating black hole solitons with scalar hair in $N=4$ supergravity”, Nucl. Phys. B, 207:2 (1982), 337–349 | DOI | MR

[5] S.-C. Lee, “Kaluza–Klein dyons and the Toda lattice”, Phys. Lett. B, 149:1–3 (1984), 98–99 | DOI

[6] S. J. Poletti, J. Twamley, D. L. Wiltshire, “Dyonic dilaton black holes”, Class. Quant. Grav., 12:7 (1995), 1753–1769, arXiv: hep-th/9502054 | DOI | MR

[7] G. W. Gibbons, D. Kastor, L. A. J. London, P. K. Townsend, J. H. Traschen, “Supersymmetric self-gravitating solitons”, Nucl. Phys. B, 416:3 (1994), 850–880, arXiv: hep-th/9310118 | DOI | MR

[8] M. Nozawa, “On the Bogomol'nyi bound in Einstein–Maxwell-dilaton gravity”, Class. Quant. Grav., 28:17 (2011), 175013, 28 pp., arXiv: 1011.0261 | DOI | MR

[9] D. Gal'tsov, M. Khramtsov, D. Orlov, “‘Triangular’ extremal dilatonic dyons”, Phys. Lett. B, 743 (2015), 87–92, arXiv: 1412.7709 | DOI

[10] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34:3 (1979), 195–338 | DOI | MR

[11] V. D. Ivashchuk, “Black brane solutions governed by fluxbrane polynomials”, J. Geom. Phys., 86 (2014), 101–111 | DOI | MR

[12] M. E. Abishev, K. A. Boshkayev, V. D. Dzhunushaliev, V. D. Ivashchuk, “Dilatonic dyon black hole solutions”, Class. Quant. Grav., 32:16 (2015), 165010, 15 pp., arXiv: 1504.07657 | DOI | MR

[13] M. E. Abishev, K. A. Boshkayev, V. D. Ivashchuk, “Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields”, Eur. Phys. J. C, 77:3 (2017), 180, 10 pp., arXiv: 1701.02029 | DOI

[14] V. D. Ivashchuk, “Composite fluxbranes with general intersections”, Class. Quant. Grav., 19:11 (2002), 3033–3047, arXiv: hep-th/0202022 | DOI | MR

[15] A. A. Golubtsova, V. D. Ivashchuk, “On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras”, arXiv: 0804.0757

[16] N. Kundu, P. Narayan, N. Sircar, S. P. Trivedi, “Entangled dilaton dyons”, JHEP, 03 (2013), 155, 31 pp., arXiv: 1208.2008 | DOI

[17] A. Amoretti, M. Baggioli, N. Magnoli, D. Musso, “Chasing the cuprates with dilatonic dyons”, JHEP, 06 (2016), 113, 29 pp., arXiv: 1603.03029 | DOI

[18] C. M. Chen, D. V. Gal'tsov, D. G. Orlov, “Extremal dyonic black holes in $D=4$ Gauss–Bonnet gravity”, Phys. Rev. D, 78:10 (2008), 104013, arXiv: 0809.1720 | DOI

[19] G. Clément, “Rotating Kaluza–Klein monopoles and dyons”, Phys. Lett. A, 118:1 (1986), 11–13 | DOI

[20] D. Rasheed, “The rotating dyonic black holes of Kaluza–Klein theory”, Nucl. Phys. B, 454:1–2 (1995), 379–401, arXiv: hep-th/9505038 | DOI | MR

[21] D. V. Galtsov, A. A. Garcia, O. V. Kechkin, “Symmetries of the stationary Einstein–Maxwell-dilaton system”, Class. Quant. Grav., 12:12 (1995), 2887–2903, arXiv: hep-th/9504155 | DOI | MR

[22] J. A. Cázares, H. García-Compeán, V. S. Manko, “On the physical parametrization and magnetic analogs of the Emparan–Teo dihole solution”, Phys. Lett. B, 662:2 (2008), 213–216, arXiv: 0711.4802 | DOI | MR

[23] G. Clément, D. Gal'tsov, “On the Smarr formula for rotating dyonic black holes”, Phys. Lett. B, 773 (2017), 290–294 | DOI