@article{TMF_2018_197_2_a9,
author = {E. A. Davydov},
title = {Discreteness of dyonic dilaton black holes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {311--327},
year = {2018},
volume = {197},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/}
}
E. A. Davydov. Discreteness of dyonic dilaton black holes. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 311-327. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a9/
[1] G. W. Gibbons, K. Maeda, “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298 (1988), 741–775 | DOI | MR
[2] D. Garfinkle, G. T. Horowitz, A. Strominger, “Charged black holes in string theory”, Phys. Rev. D, 43:10 (1991), 3140–3143 ; Erratum, Phys. Rev. D, 45:10 (1992), 3888 | DOI | MR | DOI
[3] P. Dobiasch, D. Maison, “Stationary, spherically symmetric solutions of Jordan's unified theory of gravity and electromagnetism”, Gen. Rel. Grav., 14:3 (1982), 231–242 | DOI | MR
[4] G. W. Gibbons, “Antigravitating black hole solitons with scalar hair in $N=4$ supergravity”, Nucl. Phys. B, 207:2 (1982), 337–349 | DOI | MR
[5] S.-C. Lee, “Kaluza–Klein dyons and the Toda lattice”, Phys. Lett. B, 149:1–3 (1984), 98–99 | DOI
[6] S. J. Poletti, J. Twamley, D. L. Wiltshire, “Dyonic dilaton black holes”, Class. Quant. Grav., 12:7 (1995), 1753–1769, arXiv: hep-th/9502054 | DOI | MR
[7] G. W. Gibbons, D. Kastor, L. A. J. London, P. K. Townsend, J. H. Traschen, “Supersymmetric self-gravitating solitons”, Nucl. Phys. B, 416:3 (1994), 850–880, arXiv: hep-th/9310118 | DOI | MR
[8] M. Nozawa, “On the Bogomol'nyi bound in Einstein–Maxwell-dilaton gravity”, Class. Quant. Grav., 28:17 (2011), 175013, 28 pp., arXiv: 1011.0261 | DOI | MR
[9] D. Gal'tsov, M. Khramtsov, D. Orlov, “‘Triangular’ extremal dilatonic dyons”, Phys. Lett. B, 743 (2015), 87–92, arXiv: 1412.7709 | DOI
[10] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34:3 (1979), 195–338 | DOI | MR
[11] V. D. Ivashchuk, “Black brane solutions governed by fluxbrane polynomials”, J. Geom. Phys., 86 (2014), 101–111 | DOI | MR
[12] M. E. Abishev, K. A. Boshkayev, V. D. Dzhunushaliev, V. D. Ivashchuk, “Dilatonic dyon black hole solutions”, Class. Quant. Grav., 32:16 (2015), 165010, 15 pp., arXiv: 1504.07657 | DOI | MR
[13] M. E. Abishev, K. A. Boshkayev, V. D. Ivashchuk, “Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields”, Eur. Phys. J. C, 77:3 (2017), 180, 10 pp., arXiv: 1701.02029 | DOI
[14] V. D. Ivashchuk, “Composite fluxbranes with general intersections”, Class. Quant. Grav., 19:11 (2002), 3033–3047, arXiv: hep-th/0202022 | DOI | MR
[15] A. A. Golubtsova, V. D. Ivashchuk, “On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras”, arXiv: 0804.0757
[16] N. Kundu, P. Narayan, N. Sircar, S. P. Trivedi, “Entangled dilaton dyons”, JHEP, 03 (2013), 155, 31 pp., arXiv: 1208.2008 | DOI
[17] A. Amoretti, M. Baggioli, N. Magnoli, D. Musso, “Chasing the cuprates with dilatonic dyons”, JHEP, 06 (2016), 113, 29 pp., arXiv: 1603.03029 | DOI
[18] C. M. Chen, D. V. Gal'tsov, D. G. Orlov, “Extremal dyonic black holes in $D=4$ Gauss–Bonnet gravity”, Phys. Rev. D, 78:10 (2008), 104013, arXiv: 0809.1720 | DOI
[19] G. Clément, “Rotating Kaluza–Klein monopoles and dyons”, Phys. Lett. A, 118:1 (1986), 11–13 | DOI
[20] D. Rasheed, “The rotating dyonic black holes of Kaluza–Klein theory”, Nucl. Phys. B, 454:1–2 (1995), 379–401, arXiv: hep-th/9505038 | DOI | MR
[21] D. V. Galtsov, A. A. Garcia, O. V. Kechkin, “Symmetries of the stationary Einstein–Maxwell-dilaton system”, Class. Quant. Grav., 12:12 (1995), 2887–2903, arXiv: hep-th/9504155 | DOI | MR
[22] J. A. Cázares, H. García-Compeán, V. S. Manko, “On the physical parametrization and magnetic analogs of the Emparan–Teo dihole solution”, Phys. Lett. B, 662:2 (2008), 213–216, arXiv: 0711.4802 | DOI | MR
[23] G. Clément, D. Gal'tsov, “On the Smarr formula for rotating dyonic black holes”, Phys. Lett. B, 773 (2017), 290–294 | DOI