Notes on the SYK model in real time
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 296-310
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a nonperturbative formulation of the Sachdev–Ye–Kitaev (SYK) model. The partition function of the model can be represented as a well-defined functional integral over Grassmann variables in Euclidean time, but it diverges after the transformation to fermion bilocal fields. We note that the generating functional of the SYK model in real time is well defined even after the transformation to bilocal fields and can be used for nonperturbative investigations of its properties. We study the SYK model in zero dimensions, evaluate its large-$N$ expansion, and investigate phase transitions.
Keywords: disorder model, $1/N$ expansion, Sachdev–Ye–Kitaev model.
@article{TMF_2018_197_2_a8,
     author = {I. Ya. Aref'eva and I. V. Volovich},
     title = {Notes on {the~SYK} model in real time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {296--310},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a8/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
TI  - Notes on the SYK model in real time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 296
EP  - 310
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a8/
LA  - ru
ID  - TMF_2018_197_2_a8
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%T Notes on the SYK model in real time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 296-310
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a8/
%G ru
%F TMF_2018_197_2_a8
I. Ya. Aref'eva; I. V. Volovich. Notes on the SYK model in real time. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 296-310. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a8/

[1] S. Sachdev, J. Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Phys. Rev. Lett., 70:21 (1993), 3339–3342, arXiv: cond-mat/9212030 | DOI

[2] A. Kitaev, 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/

[3] S. Sachdev, “Bekenstein–Hawking entropy and strange metals”, Phys. Rev. X, 5:4 (2015), 041025, 13 pp., arXiv: 1506.05111 | DOI

[4] J. Polchinski, V. Rosenhaus, “The spectrum in the Sachdev–Ye–Kitaev Model”, JHEP, 04 (2016), 001, 24 pp., arXiv: 1601.06768 | DOI | MR

[5] A. Jevicki, K. Suzuki, J. Yoon, “Bi-local holography in the SYK model”, JHEP, 07 (2016), 007, 24 pp., arXiv: 1603.06246 | DOI | MR

[6] J. Maldacena, D. Stanford, “Remarks on the Sachdev–Ye–Kitaev model”, Phys. Rev. D, 94:10 (2016), 106002, 43 pp., arXiv: 1604.07818 | DOI | MR

[7] J. Maldacena, D. Stanford, Z. Yang, “Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space”, Progr. Theor. Exp. Phys., 2016:12 (2016), 12C104, 26 pp., arXiv: 1606.01857 | DOI | MR

[8] D. Bagrets, A. Altland, A. Kamenev, “Sachdev–Ye–Kitaev model as Liouville quantum mechanics”, Nucl. Phys. B, 911 (2016), 191–205, arXiv: 1607.00694 | DOI

[9] K. Jensen, “Chaos in AdS$_2$ holography”, Phys. Rev. Lett., 117:11 (2016), 111601, 6 pp., arXiv: 1605.06098 | DOI

[10] J. Engelsoy, T. G. Mertens, H. Verlinde, “An investigation of AdS$_{2}$ backreaction and holography”, JHEP, 07 (2016), 139, 29 pp., arXiv: 1606.03438 | DOI | MR

[11] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, M. Tezuka, “Black holes and random matrices”, JHEP, 05 (2017), 118, 54 pp., arXiv: 1611.04650 | DOI

[12] D. J. Gross, V. Rosenhaus, “The bulk dual of SYK: cubic couplings”, JHEP, 05 (2017), 092, 32 pp., arXiv: 1702.08016 | DOI | MR

[13] D. J. Gross, V. Rosenhaus, “All point correlation functions in SYK”, JHEP, 12 (2017), 148, 58 pp., arXiv: 1710.08113 | DOI

[14] A. Kitaev, S. Suh, The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual, arXiv: 1711.08467

[15] S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, I. V. Volovich, “Flows in nonequilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021, 19 pp., arXiv: 1612.00213 | DOI | MR

[16] A. S. Trushechkin, I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, Europhys. Lett., 113:3 (2016), 30005, 6 pp. | DOI

[17] I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Thermalization after holographic bilocal quench”, JHEP, 9 (2017), 115, 65 pp. | DOI | MR

[18] I. V. Volovich, S. V. Kozyrev, “Manipulyatsiya sostoyaniyami vyrozhdennoi kvantovoi sistemy”, Tr. MIAN, 294 (2016), 256–267 | DOI | DOI | MR

[19] V. S. Vladimirov, I. V. Volovich, “Superanaliz. I. Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl

[20] G. Sege, Ortogonalnye polinomy, Fizmatgiz, M., 1962 | MR | Zbl | Zbl

[21] M. Wyman, “The asymptotic behaviour of the Hermite polynomials”, Canad. J. Math., 15 (1963), 332–349 | DOI | MR

[22] D. Dominici, “Asymptotic analysis of the Hermite polynomials from their differential-difference equation”, J. Differ. Equ. Appl., 13:12 (2007), 1115–1128 | DOI | MR

[23] I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, I. V. Volovich, “On replica-nondiagonal large $N$ saddles in the SYK model”, Quarks–$2018$, XXth International Seminar on High-Energy Physics (Valday, Russia, 27 May–2 June, 2018), EPJ Web of Conferences, 2018 (to appear)

[24] I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “On $1/N$ diagrammatics in the SYK model beyond the conformal limit”, Quarks–$2018$, XXth International Seminar on High-Energy Physics (Valday, Russia, 27 May–2 June, 2018), EPJ Web of Conferences, 2018 (to appear)