Existence of Majorana bound states in a superconducting nanowire
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 279-289
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nanowire with the $s$-wave superconducting order induced as a result of the proximity effect in the presence of the Zeeman field and the Rashba interaction. For a small superconducting gap and small momenta, we analytically prove the existence of Majorana bound states for a certain local change in the Zeeman field or the superconducting order and also obtain explicit expressions for the corresponding wave functions. We study the scattering of excited states with energies that are close to boundary gap points in the case of propagation through an impurity for local changes in the indicated system parameters near this impurity and show that the transmission probability is equal to unity.
Keywords: superconductivity, Majorana bound state, nanowire, impurity, Zeeman field, scattering problem.
@article{TMF_2018_197_2_a6,
     author = {Yu. P. Chuburin},
     title = {Existence of {Majorana} bound states in a~superconducting nanowire},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {279--289},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a6/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Existence of Majorana bound states in a superconducting nanowire
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 279
EP  - 289
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a6/
LA  - ru
ID  - TMF_2018_197_2_a6
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Existence of Majorana bound states in a superconducting nanowire
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 279-289
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a6/
%G ru
%F TMF_2018_197_2_a6
Yu. P. Chuburin. Existence of Majorana bound states in a superconducting nanowire. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 279-289. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a6/

[1] S. R. Elliot, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163, arXiv: 1403.4976 | DOI | MR

[2] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 32 pp., arXiv: 1601.02726 | DOI

[3] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Progr. Phys., 75:7 (2012), 076501, 36 pp., arXiv: 1202.1293 | DOI

[4] S. Das Sarma, A. Nag, J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires”, Phys. Rev. B, 94:3 (2016), 035143, 17 pp. | DOI

[5] J. D. Sau, E. Demler, “Bound states at impurities as a probe of topological superconductivity in nanowires”, Phys. Rev. B, 88:20 (2013), 205402, 6 pp. | DOI

[6] T. Karzig, G. Refael, F. von Oppen, “Boosting Majorana zero modes”, Phys. Rev. X, 3:4 (2013), 041017, 16 pp. | DOI

[7] S. Das Sarma, J. D. Sau, T. D. Stanescu, “Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire”, Phys. Rev. B, 86:22 (2012), 220506, 5 pp. | DOI

[8] C.-X. Liu, F. Setiawan, J. D. Sau, S. Das Sarma, “Phenomenology of soft gap, zero-bias peak, and zero-mode splitting in ideal Majorana nanowires”, Phys. Rev. B, 96:5 (2017), 054520, 18 pp., arXiv: 1706.04573 | DOI

[9] C. Moore, T. D. Stanescu, S. Tewari, “Two-terminal charge tunneling: disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures”, Phys. Rev. B, 97:16 (2018), 165302, 14 pp., arXiv: 1611.07058 | DOI

[10] D. Chevallier, P. Simon, C. Bena, “From Andreev bound states to Majorana fermions in topological wires on superconducting substrates: a story of mutation”, Phys. Rev. B, 88:16 (2013), 165401, 6 pp. | DOI

[11] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. gos. un-ta, L., 1975

[12] S. K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M. A. Solis, M. de Llano, A. A. Valladares, O. Rojo, “Linear to quadratic crossover of Cooper-pair dispersion relation”, Physica C, 351:4 (2001), 341–348, arXiv: cond-mat/0008478 | DOI

[13] Y. Matsui, “Nucleon-trinucleon scattering with Yamaguchi potential”, Progr. Theor. Phys., 104:5 (2000), 981–993 | DOI

[14] Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap”, Physica E, 89 (2017), 130–133 | DOI

[15] D. Sticlet, B. Nijholt, A. Akhmerov, “Robustness of Majorana bound states in the short-junction limit”, Phys. Rev. B, 95:11 (2017), 115421, 13 pp., arXiv: 1609.00637 | DOI

[16] P. San-Jose, J. Cayao, E. Prada, R. Aguado, “Majorana bound states from exceptional points in non-topological superconductors”, Sci. Rep., 6 (2016), 21427, 13 pp. | DOI