Mots-clés : quantization condition
@article{TMF_2018_197_2_a5,
author = {S. Yu. Dobrokhotov and D. S. Minenkov and S. B. Shlosman},
title = {Asymptotics of wave functions of the~stationary {Schr\"odinger} equation in {the~Weyl} chamber},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {269--278},
year = {2018},
volume = {197},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a5/}
}
TY - JOUR AU - S. Yu. Dobrokhotov AU - D. S. Minenkov AU - S. B. Shlosman TI - Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 269 EP - 278 VL - 197 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a5/ LA - ru ID - TMF_2018_197_2_a5 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A D. S. Minenkov %A S. B. Shlosman %T Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 269-278 %V 197 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a5/ %G ru %F TMF_2018_197_2_a5
S. Yu. Dobrokhotov; D. S. Minenkov; S. B. Shlosman. Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a5/
[1] D. Ioffe, S. Shlosman, Y. Velenik, “An invariance principle to Ferrari–Spohn diffusions”, Commun. Math. Phys., 336:2 (2015), 905–932 ; D. Ioffe, Y. Velenik, V. Wachtel, “Dyson Ferrari–Spohn diffusions and ordered walks under area tilts”, Probab. Theory Relat. Fields, 170:1–2 (2018), 11–47 | DOI | DOI
[2] G. Galperin, A. Zemlyakov, Matematicheskie billiardy, Nauka, M., 1990
[3] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo Leningr. un-ta, L., 1991 | MR
[4] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR
[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1974 | MR
[6] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965 ; В. П. Маслов, М. В. Федорюк, Квазиклассическое приближение для уравнений квантовой механики, Наука, М., 1976 | MR | Zbl | MR | Zbl
[7] M. V. Karasev, V. P. Maslov, Nelineinaya skobka Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | MR | Zbl | Zbl
[8] V. M. Babich, “Matematicheskaya teoriya difraktsii (obzor nekotorykh issledovanii, vypolnennykh v laboratorii matematicheskikh problem geofiziki LOMI)”, Tr. MIAN SSSR, 175 (1986), 47–62 ; А. Найфэ, Введение в методы возмущений, Мир, М., 1984 | MR | Zbl | MR | Zbl
[9] M. V. Berry, “Uniform approximation for potential scattering involving a rainbow”, Proc. Phys. Soc., 89 (1966), 479–90 | DOI
[10] Y. Colin de Verdiére, “Bohr–Sommerfeld rules to all orders”, Ann. H. Poincaré, 6:5 (2005), 925–936 ; Д. В. Косыгин, А. А. Минасов, Я. Г. Синай, “Статистические свойства спектров операторов Лапласа–Бельтрами на поверхностях Лиувилля”, УМН, 48:4(292) (1993), 3–130 | DOI | DOI | MR | Zbl