Integral characteristics of wave packets in the problem of the evolution of a wave function on a one-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 257-268
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quantum dynamics of charge transfer on a lattice in the tight-binding approximation and analytically calculate the integral characteristics of the wave packet propagating along the lattice. We focus on calculating the mean and root-mean-square displacements. We also obtain expressions for higher-order moments as series for squares of Bessel functions, which might be independently interesting.
Keywords: quantum dynamics, tight-binding approximation, moments of distribution function.
@article{TMF_2018_197_2_a4,
     author = {V. N. Likhachev and G. A. Vinogradov},
     title = {Integral characteristics of wave packets in the~problem of the~evolution of a~wave function on a~one-dimensional lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {257--268},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a4/}
}
TY  - JOUR
AU  - V. N. Likhachev
AU  - G. A. Vinogradov
TI  - Integral characteristics of wave packets in the problem of the evolution of a wave function on a one-dimensional lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 257
EP  - 268
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a4/
LA  - ru
ID  - TMF_2018_197_2_a4
ER  - 
%0 Journal Article
%A V. N. Likhachev
%A G. A. Vinogradov
%T Integral characteristics of wave packets in the problem of the evolution of a wave function on a one-dimensional lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 257-268
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a4/
%G ru
%F TMF_2018_197_2_a4
V. N. Likhachev; G. A. Vinogradov. Integral characteristics of wave packets in the problem of the evolution of a wave function on a one-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a4/

[1] K. E. Augustyn, J. C. Genereux, J. K. Barton, “Distance-independent DNA charge transport across an adenine tract”, Angew. Chem. Internat. Ed., 46 (2007), 5731–5733 | DOI

[2] B. Elias, J. C. Genereux, J. K. Barton, “Ping-pong electron transfer through DNA”, Angew. Chem. Internat. Ed., 47 (2008), 9067–9070 | DOI

[3] J. C. Genereux, J. K. Barton, “Mechanisms for DNA charge transport”, Chem. Rev., 110:3 (2010), 1642–1662 | DOI

[4] K. Kawai, H. Kodera, Y. Osakada, T. Majima, “Sequence-independent and rapid long-range charge transfer through DNA”, Nature Chem., 1 (2009), 156–159 | DOI

[5] V. N. Likhachev, T. Yu. Astakhova, G. A. Vinogradov, “‘Elektronnyi ping-pong’ na odnomernoi reshetke. Dvizhenie volnovogo paketa do pervogo otrazheniya”, TMF, 175:2 (2013), 279–299 | DOI | DOI | MR | Zbl

[6] V. N. Likhachev, O. I. Shevaleevskii, G. A. Vinogradov, “Quantum dynamics of charge transfer on the one-dimensional lattice: wave packet spreading and recurrence”, Chinese Phys. B, 25:1 (2016), 018708 | DOI

[7] V. A. Benderskii, E. I. Kats, “Propagating vibrational excitations in molecular chains”, Pisma v ZhETF, 94:6 (2011), 494–499 | DOI

[8] V. A. Benderskii, E. I. Kats, “Rasprostranenie vozbuzhdeniya v dlinnykh odnomernykh tsepochkakh: perekhod ot regulyarnoi kvantovoi dinamiki k stokhasticheskoi”, ZhETF, 143:1 (2013), 5–19 | DOI

[9] F. A. B. F. de Moura, R. A. Caetano, B. Santos, “Dynamics of one electron in a nonlinear disordered chain”, J. Phys.: Condens. Matter, 24:24 (2012), 245401, 5 pp. | DOI

[10] F. Piéchon, “Anomalous diffusion properties of wave packets on quasiperiodic chains”, Phys. Rev. Lett., 76:23 (1996), 4372–4375 | DOI

[11] A. S. Pikovsky, D. L. Shepelyansky, “Destruction of Anderson localization by a weak nonlinearity”, Phys. Rev. Lett., 100:8 (2008), 094101, 4 pp., arXiv: 0708.3315 | DOI

[12] S. Flach, D. O. Krimer, Ch. Skokos, “Universal spreading of wave packets in disordered nonlinear systems”, Phys. Rev. Lett., 102:2 (2009), 024101, 4 pp. | DOI

[13] H. Hatami, C. Danieli, J. D. Bodyfelt, S. Flach, “Quasiperiodic driving of Anderson localized waves in one dimension”, Phys. Rev. E, 93:6 (2016), 062205, 9 pp. | DOI | MR

[14] B. Huckestein, R. Klesse, “Diffusion and multifractality at the metal–insulator transition”, Phil. Magazine B, 77:5 (1998), 1181–1187 | DOI

[15] G. S. Ng, T. Kottos, “Wavepacket dynamics of the nonlinear Harper model”, Phys. Rev. B, 75:20 (2007), 205120, 5 pp. | DOI

[16] R. Ketzmerick, K. Kruse, S. Kraut, T. Geisel, “What determines the spreading of a wave packet?”, Phys. Rev. Lett., 79:11 (1997), 1959–1962 | DOI | MR

[17] G. N. Vatson, Teoriya besselevykh funktsii, v. 1, IL, M., 1949 | MR | Zbl