Renormalizability and unitarity of the Englert–Broute–Higgs–Kibble
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 252-256
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Englert–Broute–Higgs–Kibble model is renormalizable and unitary.
Keywords: Englert–Broute–Higgs–Kibble model, renormalization of gauge-invariant theories, spontaneous symmetry breaking.
@article{TMF_2018_197_2_a3,
     author = {A. A. Slavnov},
     title = {Renormalizability and unitarity of {the~Englert{\textendash}Broute{\textendash}Higgs{\textendash}Kibble}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--256},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a3/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - Renormalizability and unitarity of the Englert–Broute–Higgs–Kibble
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 252
EP  - 256
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a3/
LA  - ru
ID  - TMF_2018_197_2_a3
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T Renormalizability and unitarity of the Englert–Broute–Higgs–Kibble
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 252-256
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a3/
%G ru
%F TMF_2018_197_2_a3
A. A. Slavnov. Renormalizability and unitarity of the Englert–Broute–Higgs–Kibble. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 252-256. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a3/

[1] F. Englert, R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Lett., 13:9 (1964), 321–323 | DOI | MR

[2] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett., 12:2 (1964), 132–133 | DOI

[3] T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge theories”, Phys. Rev., 155:5 (1967), 1554–1561 | DOI

[4] V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139:1–2 (1978), 1–19 | DOI | MR

[5] A. A. Slavnov, “A Lorentz invariant formulation of the Yang–Mills theory with gauge invariant ghost field Lagrangian”, JHEP, 08 (2008), 047, 11 pp., arXiv: 0807.1795 | DOI | MR

[6] A. A. Slavnov, “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, Tr. MIAN, 272 (2011), 246–255 | DOI | MR | Zbl

[7] A. Quadri, A. A. Slavnov, “Renormalization of the Yang–Mills theory in the ambiguity-free gauge”, JHEP, 07 (2010), 087, 22 pp., arXiv: 1002.2490 | DOI | MR

[8] A. Kvadri, A. A. Slavnov, “Svobodnaya ot neodnoznachnosti formulirovka modeli Khiggsa–Kibbla”, TMF, 166:3 (2011), 336–349 | DOI | DOI | MR

[9] A. A. Slavnov, “Kvantovanie modelei massivnykh neabelevykh kalibrovochnykh polei so spontanno narushennoi simmetriei vne ramok teorii vozmuschenii”, TMF, 189:2 (2016), 279–285 | DOI | DOI | Zbl

[10] A. A. Slavnov, “Novyi podkhod k kvantovaniyu polya Yanga–Millsa”, TMF, 183:2 (2015), 163–176 | DOI | DOI | MR | Zbl

[11] A. A. Slavnov, “O vozmozhnosti opisaniya neabelevykh massivnykh kalibrovochnykh polei v ramkakh perenormiruemoi teorii”, TMF, 193:3 (2017), 484–492 | DOI | DOI | MR

[12] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR