Artin billiard: Exponential decay of correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 230-251
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The hyperbolic Anosov C-systems have an exponential instability of their trajectories and as such represent the most natural chaotic dynamical systems. The C-systems defined on compact surfaces of the Lobachevsky plane of constant negative curvature are especially interesting. An example of such a system was introduced in a brilliant article published in 1924 by the mathematician Emil Artin. The dynamical system is defined on the fundamental region of the Lobachevsky plane, which is obtained by identifying points congruent with respect to the modular group, the discrete subgroup of the Lobachevsky plane isometries. The fundamental region in this case is a hyperbolic triangle. The geodesic trajectories of the non-Euclidean billiard are bounded to propagate on the fundamental hyperbolic triangle. Here, we present Artin's results, calculate the correlation functions/observables defined on the phase space of the Artin billiard, and show that the correlation functions decay exponentially with time. We use the Artin symbolic dynamics, differential geometry, and the group theory methods of Gelfand and Fomin.
Keywords: Anosov C-system, hyperbolic system, Lobachevsky plane, hyperbolic geodesic flow, chaotic system, correlation function, automorphic function.
Mots-clés : Artin billiard
@article{TMF_2018_197_2_a2,
     author = {H. R. Poghosyan and H. M. Babujian and G. K. Savvidi},
     title = {Artin billiard: {Exponential} decay of correlation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--251},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a2/}
}
TY  - JOUR
AU  - H. R. Poghosyan
AU  - H. M. Babujian
AU  - G. K. Savvidi
TI  - Artin billiard: Exponential decay of correlation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 230
EP  - 251
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a2/
LA  - ru
ID  - TMF_2018_197_2_a2
ER  - 
%0 Journal Article
%A H. R. Poghosyan
%A H. M. Babujian
%A G. K. Savvidi
%T Artin billiard: Exponential decay of correlation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 230-251
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a2/
%G ru
%F TMF_2018_197_2_a2
H. R. Poghosyan; H. M. Babujian; G. K. Savvidi. Artin billiard: Exponential decay of correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 230-251. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a2/

[1] E. Artin, “Ein mechanisches System mit quasiergodischen Bahnen”, Abh. Math. Sem. Univ. Hamburg, 3:1 (1924), 170–175 | DOI | MR

[2] J. Hadamard, “Les surfaces á courbures opposées et leur linges géodésiques”, J. Math. Pures Appl., 4 (1898), 27–73 | Zbl

[3] G. A. Hedlund, “The dynamics of geodesic flow”, Bull. Amer. Math. Soc., 45:4 (1939), 241–246 | DOI | MR

[4] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90 (1967), 3–210 | MR | Zbl

[5] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, Berlin, 1975 | DOI | MR

[6] A. N. Kolmogorov, “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, Tr. MIAN SSSR, 169 (1985), 94–98 | MR | Zbl

[7] A. N. Kolmogorov, “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, Dokl. AN SSSR, 124:4 (1959), 754–755 | MR | Zbl

[8] Ya. G. Sinai, “O ponyatii entropii dinamicheskoi sistemy”, Dokl. AN SSSR, 124:4 (1959), 768–771 | MR | Zbl

[9] D. Ruelle, Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, Reading, MA, 1978 | MR

[10] E. Hopf, “Ergodic theory and the geodesic flow on surfaces of constant negative curvature”, Bull. Amer. Math. Soc., 77:6 (1971), 863–877 | DOI | MR

[11] I. M. Gelfand, S. V. Fomin, “Geodezicheskie potoki na mnogoobraziyakh postoyannoi otritsatelnoi krivizny”, UMN, 7:1(47) (1952), 118–137 | MR | Zbl

[12] P. Collet, H. Epstein, G. Gallavotti, “Perturbations of geodesic flows on surface of constant negative curvature and their mixing properties”, Commun. Math. Phys., 95:1 (1984), 61–112 | DOI | MR

[13] C. C. Moore, “Exponential decay of correlation coefficients for geodesic flows”, Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics, Proceedings of a Conference in Honor of George W. Mackey (Berkeley, CA, 21–23 May, 1984), Mathematical Sciences Research Institute Publications, 6, ed. C. C. Moore, Springer, New York, 1987, 163–181 | DOI | MR

[14] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd-vo AN SSSR, M.-L., 1950 | MR

[15] E. Hopf, “Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II”, Math. Ann., 117:1 (1940), 590–608 | DOI | MR

[16] D. Dolgopyat, “On decay of correlations in Anosov flows”, Ann. of Math. (2), 147:2 (1998), 357–390 | DOI | MR

[17] N. I. Chernov, “Markov approximations and decay of correlations for Anosov flows”, Ann. of Math. (2), 147:2 (1998), 269–324 | DOI | MR

[18] G. K. Savvidy, “The Yang–Mills classical mechanics as a Kolmogorov K-system”, Phys. Lett. B, 130:5 (1983), 303–307 | DOI | MR

[19] G. K. Savvidy, “Classical and quantum mechanics of non-abelian gauge fields”, Nucl. Phys. B, 246:2 (1984), 302–334 | DOI | MR

[20] G. K. Savvidy, N. G. Ter-Arutyunyan-Savvidy, “On the Monte Carlo simulation of physical systems”, J. Comput. Phys., 97:2 (1991), 566–572 | DOI | MR

[21] K. G. Savvidy, “The MIXMAX random number generator”, Comput. Phys. Commun., 196 (2015), 161–165 | DOI

[22] G. K. Savvidi, “C-sistemy Anosova i generatory sluchainykh chisel”, TMF, 188:2 (2016), 223–243 | DOI | DOI | MR

[23] K. G. Savvidy, G. K. Savvidy, “Spectrum and entropy of C-systems MIXMAX random number generator”, Chaos Solitons Fractals, 91 (2016), 33–38, arXiv: 1510.06274 | DOI | MR

[24] J. Maldacena, S. H. Shenker, D. Stanford, “A bound on chaos”, JHEP, 08 (2016), 106, 16 pp., arXiv: 1503.01409 | DOI | MR

[25] H. Poincaré, “Théorie des groupes fuchsiens”, Acta Math., 1:1 (1882), 1–62 | DOI | MR

[26] L. Fuchs, “Über eine Klasse von Funktionen mehrerer Variablen, welche durch Umkehrung der Integrale von Lösungen der linearen Differentialgleichungen mit rationalen Coeffizienten entstehen”, J. Reine Angew. Math., 89 (1880), 151–169 | MR

[27] C. Burstin, “Über eine spezielle Klasse reeller periodischer Funktionen”, Monatsh. Math. Phys., 26:1 (1915), 229–262 | DOI | MR

[28] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910 | MR

[29] H. Poincaré, “Mémoire sur les fonctions fuchsiennes”, Acta Math., 1 (1882), 193–294 | DOI | MR

[30] L. R. Ford, An Introduction to the Theory of Automorphic Functions, G. Bell and Sons, London, 1915 | Zbl

[31] M. Pollicott, “On the rate of mixing of Axiom A flows”, Invent. Math., 81:3 (1985), 413–426 | DOI | MR

[32] G. K. Savvidy, K. G. Savvidy, “Exponential decay of correlations functions in MIXMAX generator of pseudorandom numbers”, Chaos Solitons Fractals, 107 (2018), 244–250 | DOI | MR