Symmetry and classification of the Dirac–Fock equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 208-229
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the properties of the Dirac–Fock equation with differential operators of the first-order symmetry. For a relativistic particle in an electromagnetic field, we describe the covariant properties of the Dirac equation in an arbitrary Riemannian space $V_4$ with the signature $(-1,-1,-1,1)$. We present a general form of the differential operator with a first-order symmetry and characterize the pair of such commuting operators. We list the spaces where the free Dirac equation admits at least one differential operator with a first-order symmetry. We perform a symmetry classification of electromagnetic field tensors and construct complete sets of symmetry operators.
Keywords: symmetry operator, Riemannian space, Dirac–Fock equation.
Mots-clés : Dirac equation
@article{TMF_2018_197_2_a1,
     author = {V. N. Shapovalov},
     title = {Symmetry and classification of {the~Dirac{\textendash}Fock} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--229},
     year = {2018},
     volume = {197},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/}
}
TY  - JOUR
AU  - V. N. Shapovalov
TI  - Symmetry and classification of the Dirac–Fock equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 208
EP  - 229
VL  - 197
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/
LA  - ru
ID  - TMF_2018_197_2_a1
ER  - 
%0 Journal Article
%A V. N. Shapovalov
%T Symmetry and classification of the Dirac–Fock equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 208-229
%V 197
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/
%G ru
%F TMF_2018_197_2_a1
V. N. Shapovalov. Symmetry and classification of the Dirac–Fock equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 208-229. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/

[1] V. Fock, “Geometrisierung der Diracschen Theorie des Electrons”, Z. Phys., 57:3–4 (1929), 261–277 | DOI

[2] G. Bete, Kvantovaya mekhanika, Mir, M., 1965 | MR

[3] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR

[4] V. N. Shapovalov, “K gruppovym svoistvam lineinykh uravnenii”, Izv. vuzov SSSR. Fizika, 1968, no. 6, 75–80 | DOI

[5] V. N. Shapovalov, “Simmetrii uravneniya Diraka–Foka”, Izv. vuzov SSSR. Fizika, 1975, no. 6, 57–63 | DOI

[6] V. N. Shapovalov, G. G. Ekle, “Polnye nabory i integrirovanie lineinoi sistemy pervogo poryadka. 1”, Izv. vuzov SSSR. Fizika, 1974, no. 2, 83–88 | DOI

[7] V. N. Shapovalov, G. G. Ekle, “Polnye nabory i integrirovanie lineinoi sistemy pervogo poryadka. 2”, Izv. vuzov SSSR. Fizika, 1974, no. 2, 88–92 | DOI

[8] V. N. Shapovalov, “Prostranstva Shtekkelya”, Sib. matem. zhurnal, 20:5 (1979), 1117–1130 | MR

[9] W. Dietz, R. Rudiger, “Space-time admitting Killing–Yano tensors. II”, Proc. R. Soc. London Ser. A, 381:1781 (1982), 315–322 | DOI | MR

[10] W. Dietz, R. Rudiger, “Space-time admitting Killing–Yano tensors. I”, Proc. R. Soc. London Ser. A, 375:1762 (1981), 361–378 | DOI | MR

[11] R. Rüdiger, “Separable systems for the Dirac equation in curved space-times”, J. Math. Phys., 25:3 (1984), 649–654 | DOI | MR