Symmetry and classification of the~Dirac--Fock equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 208-229

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the properties of the Dirac–Fock equation with differential operators of the first-order symmetry. For a relativistic particle in an electromagnetic field, we describe the covariant properties of the Dirac equation in an arbitrary Riemannian space $V_4$ with the signature $(-1,-1,-1,1)$. We present a general form of the differential operator with a first-order symmetry and characterize the pair of such commuting operators. We list the spaces where the free Dirac equation admits at least one differential operator with a first-order symmetry. We perform a symmetry classification of electromagnetic field tensors and construct complete sets of symmetry operators.
Keywords: symmetry operator, Riemannian space, Dirac–Fock equation.
Mots-clés : Dirac equation
@article{TMF_2018_197_2_a1,
     author = {V. N. Shapovalov},
     title = {Symmetry and classification of {the~Dirac--Fock} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--229},
     publisher = {mathdoc},
     volume = {197},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/}
}
TY  - JOUR
AU  - V. N. Shapovalov
TI  - Symmetry and classification of the~Dirac--Fock equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 208
EP  - 229
VL  - 197
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/
LA  - ru
ID  - TMF_2018_197_2_a1
ER  - 
%0 Journal Article
%A V. N. Shapovalov
%T Symmetry and classification of the~Dirac--Fock equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 208-229
%V 197
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/
%G ru
%F TMF_2018_197_2_a1
V. N. Shapovalov. Symmetry and classification of the~Dirac--Fock equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 197 (2018) no. 2, pp. 208-229. http://geodesic.mathdoc.fr/item/TMF_2018_197_2_a1/